Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 4 x + 162 x^{2} - 332 x^{3} + 6889 x^{4}$ |
| Frobenius angles: | $\pm0.414629900148$, $\pm0.514477218667$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.1636352.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $112$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6716$ | $49617808$ | $327446753372$ | $2251336985298944$ | $15515671221171606076$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $80$ | $7198$ | $572672$ | $47438190$ | $3938946720$ | $326941430734$ | $27136057661072$ | $2252292195038430$ | $186940255036451312$ | $15516041187222535038$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=x^6+59 x^5+82 x^4+68 x^3+63 x^2+65 x+59$
- $y^2=49 x^6+26 x^5+72 x^4+11 x^3+43 x^2+14 x+58$
- $y^2=26 x^6+17 x^5+x^4+10 x^3+47 x^2+36 x+59$
- $y^2=20 x^6+62 x^5+51 x^4+46 x^3+45 x^2+7 x+68$
- $y^2=60 x^6+10 x^5+68 x^4+73 x^3+43 x^2+54 x+46$
- $y^2=46 x^6+42 x^5+60 x^4+67 x^3+78 x^2+13 x+40$
- $y^2=47 x^6+12 x^5+20 x^4+49 x^3+44 x^2+6 x+79$
- $y^2=22 x^6+17 x^5+9 x^4+39 x^3+49 x^2+12 x+6$
- $y^2=33 x^6+6 x^5+34 x^4+19 x^3+71 x^2+25 x+1$
- $y^2=80 x^6+59 x^5+26 x^4+13 x^3+57 x^2+31 x+48$
- $y^2=74 x^6+70 x^5+70 x^4+82 x^3+79 x^2+12 x+67$
- $y^2=44 x^6+43 x^5+13 x^4+65 x^3+15 x^2+3 x+28$
- $y^2=27 x^6+82 x^5+47 x^4+3 x^3+61 x^2+14 x+37$
- $y^2=60 x^6+61 x^5+41 x^4+24 x^3+28 x^2+62 x+23$
- $y^2=54 x^6+39 x^5+33 x^4+81 x^3+34 x^2+49 x+53$
- $y^2=56 x^6+80 x^5+44 x^4+61 x^3+41 x^2+6 x+21$
- $y^2=7 x^6+39 x^5+54 x^4+81 x^3+69 x^2+7 x+2$
- $y^2=45 x^6+50 x^5+46 x^4+45 x^3+30 x^2+23 x+13$
- $y^2=46 x^6+64 x^5+29 x^4+3 x^3+24 x^2+44 x+21$
- $y^2=38 x^6+70 x^5+26 x^4+73 x^3+79 x^2+30 x+54$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is 4.0.1636352.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.83.e_gg | $2$ | (not in LMFDB) |