Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 46 x^{2} + 6889 x^{4}$ |
| Frobenius angles: | $\pm0.205311937394$, $\pm0.794688062606$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-30}, \sqrt{53})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $400$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6844$ | $46840336$ | $326941226716$ | $2253399380960256$ | $15516041179437215164$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $84$ | $6798$ | $571788$ | $47481646$ | $3939040644$ | $326942080062$ | $27136050989628$ | $2252292149967838$ | $186940255267540404$ | $15516041171668576878$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 400 curves (of which all are hyperelliptic):
- $y^2=32 x^6+11 x^5+18 x^4+78 x^3+49 x^2+11 x+53$
- $y^2=64 x^6+22 x^5+36 x^4+73 x^3+15 x^2+22 x+23$
- $y^2=16 x^6+41 x^5+28 x^4+38 x^3+53 x^2+10 x+60$
- $y^2=32 x^6+82 x^5+56 x^4+76 x^3+23 x^2+20 x+37$
- $y^2=70 x^6+66 x^5+76 x^4+74 x^3+35 x^2+24 x+6$
- $y^2=57 x^6+49 x^5+69 x^4+65 x^3+70 x^2+48 x+12$
- $y^2=68 x^6+54 x^5+24 x^4+52 x^3+21 x^2+2 x+74$
- $y^2=53 x^6+25 x^5+48 x^4+21 x^3+42 x^2+4 x+65$
- $y^2=68 x^6+13 x^5+6 x^4+76 x^3+48 x^2+34 x+24$
- $y^2=53 x^6+26 x^5+12 x^4+69 x^3+13 x^2+68 x+48$
- $y^2=26 x^6+57 x^5+3 x^4+74 x^3+75 x^2+21 x+55$
- $y^2=52 x^6+31 x^5+6 x^4+65 x^3+67 x^2+42 x+27$
- $y^2=63 x^6+64 x^5+35 x^4+48 x^3+19 x^2+13 x+51$
- $y^2=43 x^6+45 x^5+70 x^4+13 x^3+38 x^2+26 x+19$
- $y^2=5 x^6+23 x^5+50 x^4+19 x^3+42 x^2+6 x+80$
- $y^2=10 x^6+46 x^5+17 x^4+38 x^3+x^2+12 x+77$
- $y^2=2 x^6+22 x^5+3 x^4+50 x^3+78 x^2+51 x+9$
- $y^2=4 x^6+44 x^5+6 x^4+17 x^3+73 x^2+19 x+18$
- $y^2=44 x^6+24 x^5+41 x^4+19 x^3+36 x^2+35 x+27$
- $y^2=5 x^6+48 x^5+82 x^4+38 x^3+72 x^2+70 x+54$
- and 380 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-30}, \sqrt{53})\). |
| The base change of $A$ to $\F_{83^{2}}$ is 1.6889.abu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1590}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.83.a_bu | $4$ | (not in LMFDB) |