Invariants
| Base field: | $\F_{3^{4}}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 30 x + 379 x^{2} - 2430 x^{3} + 6561 x^{4}$ |
| Frobenius angles: | $\pm0.0439844089045$, $\pm0.263626170191$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.69184.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $12$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4481$ | $42125881$ | $282333399104$ | $1853095978864809$ | $12157570794021386801$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $52$ | $6420$ | $531262$ | $43048484$ | $3486757252$ | $282428548446$ | $22876778566372$ | $1853020069124804$ | $150094634746167262$ | $12157665460641750900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=a^2 x^6+(a^3+a^2+2 a+1) x^5+(a^3+a) x^4+2 a^2 x^3+(2 a^2+2 a+2) x^2+(a^3+a^2+a+2) x+a^3+a+1$
- $y^2=(a^3+a^2+2 a+1) x^6+(a+1) x^5+(a^2+2 a+1) x^4+2 a^2 x^3+(2 a^3+a^2+2 a) x^2+(a^3+2 a^2+a+1) x+2 a^3+a^2+2$
- $y^2=(2 a^3+a+1) x^6+(2 a^3+2 a^2+1) x^5+(2 a^3+2 a+2) x^4+(a^2+2) x^3+(2 a^3+1) x^2+(a^3+2 a^2+a) x+2 a^3+2 a^2+a+2$
- $y^2=(2 a^2+1) x^6+a^3 x^5+(a^3+a^2+a) x^4+(a^3+a^2) x^3+(2 a^3+2 a^2+2 a+1) x^2+(2 a^3+2 a+1) x+2 a^3+a^2+a+1$
- $y^2=a^3 x^6+(a^3+1) x^5+(2 a^3+2) x^4+(2 a^3+2 a) x^3+(2 a^3+2 a+1) x^2+(a^3+2 a^2) x+2 a^3$
- $y^2=(a^3+2 a+2) x^6+(2 a^3+2 a+1) x^5+(2 a^3+2 a^2+2 a) x^4+(2 a^3+a^2+2 a) x^3+(2 a^3+a^2+2 a+1) x^2+(2 a^2+2 a) x+a^3+2 a^2+2$
- $y^2=(2 a^3+2 a^2+2 a+1) x^6+(2 a^2+1) x^5+2 a^3 x^4+(2 a^3+1) x^3+(a^3+a^2+1) x^2+(2 a^3+2 a^2+2) x+a^3+a^2+2 a$
- $y^2=(2 a^2+1) x^6+(a^3+a^2+2) x^5+(a^3+a^2) x^4+(2 a^3+a^2) x^3+(a^3+1) x^2+(a^3+a^2+2 a) x+2 a^3+a$
- $y^2=(2 a^3+a^2+1) x^6+(a^3+a^2+1) x^5+(2 a^3+2 a^2) x^4+(a^3+a^2+a) x^3+(a^3+a^2+2 a+2) x^2+2 x+a^2$
- $y^2=(a^3+2 a^2+2 a) x^6+(a^3+a^2+2 a) x^5+(a^3+a+1) x^4+(a^3+2 a^2+2) x^3+(2 a^3+2 a^2+a+2) x^2+(a^3+a^2+a) x+a^3+2 a^2+a+2$
- $y^2=(2 a^2+2 a) x^6+(2 a^2+a+2) x^5+(a^2+1) x^4+(2 a^3+a) x^3+(a^3+a^2+2 a+1) x^2+(a^3+2 a^2+1) x+2 a^3+2 a$
- $y^2=(a^3+a+2) x^6+(a^3+a+1) x^5+(a^3+a^2+2 a+1) x^4+(2 a^3+a^2+2 a) x^2+(2 a^3+a^2+2 a) x+a^3+1$
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{4}}$.
Endomorphism algebra over $\F_{3^{4}}$| The endomorphism algebra of this simple isogeny class is 4.0.69184.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.81.be_op | $2$ | (not in LMFDB) |