Properties

Label 2.8.h_bc
Base field $\F_{2^{3}}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2^{3}}$
Dimension:  $2$
L-polynomial:  $( 1 + 3 x + 8 x^{2} )( 1 + 4 x + 8 x^{2} )$
  $1 + 7 x + 28 x^{2} + 56 x^{3} + 64 x^{4}$
Frobenius angles:  $\pm0.677932000632$, $\pm0.750000000000$
Angle rank:  $1$ (numerical)
Jacobians:  $0$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $156$ $4680$ $225108$ $17643600$ $1069417596$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $16$ $72$ $436$ $4304$ $32636$ $261144$ $2101220$ $16770976$ $134212108$ $1073792232$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{12}}$.

Endomorphism algebra over $\F_{2^{3}}$
The isogeny class factors as 1.8.d $\times$ 1.8.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{2^{3}}$
The base change of $A$ to $\F_{2^{12}}$ is 1.4096.db $\times$ 1.4096.ey. The endomorphism algebra for each factor is:
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.8.ah_bc$2$2.64.h_ey
2.8.ab_e$2$2.64.h_ey
2.8.b_e$2$2.64.h_ey

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.8.ah_bc$2$2.64.h_ey
2.8.ab_e$2$2.64.h_ey
2.8.b_e$2$2.64.h_ey
2.8.ah_bc$4$(not in LMFDB)
2.8.ad_q$8$(not in LMFDB)
2.8.d_q$8$(not in LMFDB)