Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 25 x + 303 x^{2} + 1975 x^{3} + 6241 x^{4}$ |
| Frobenius angles: | $\pm0.672021317160$, $\pm0.850601564004$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.375525.3 |
| Galois group: | $D_{4}$ |
| Jacobians: | $48$ |
| Isomorphism classes: | 60 |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $8545$ | $38837025$ | $242508800455$ | $1517526497832525$ | $9468182234892898000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $105$ | $6223$ | $491865$ | $38960803$ | $3077025900$ | $243087408763$ | $19203905555835$ | $1517108903160403$ | $119851594973360295$ | $9468276086669098798$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=45 x^6+65 x^5+70 x^4+43 x^3+60 x^2+64 x+13$
- $y^2=13 x^6+62 x^5+10 x^4+3 x^3+71 x^2+6 x+57$
- $y^2=18 x^6+13 x^5+78 x^4+70 x^3+32 x^2+77 x+65$
- $y^2=17 x^6+44 x^5+5 x^4+5 x^3+49 x^2+16 x+46$
- $y^2=16 x^6+50 x^5+49 x^4+11 x^3+48 x^2+2 x+22$
- $y^2=34 x^6+x^5+31 x^4+46 x^3+63 x^2+73 x+15$
- $y^2=12 x^6+53 x^5+72 x^4+15 x^3+67 x^2+4 x+51$
- $y^2=38 x^6+35 x^5+29 x^4+50 x^3+34 x^2+14 x+48$
- $y^2=25 x^6+57 x^5+23 x^4+51 x^3+35 x^2+22$
- $y^2=14 x^6+65 x^5+54 x^4+9 x^3+62 x^2+11 x+10$
- $y^2=35 x^6+26 x^5+6 x^4+18 x^3+39 x^2+23 x+63$
- $y^2=25 x^6+56 x^5+x^4+37 x^3+51 x^2+77 x+24$
- $y^2=27 x^6+15 x^5+8 x^4+31 x^3+13 x^2+27 x+7$
- $y^2=32 x^6+37 x^5+69 x^4+34 x^3+46 x^2+69 x+39$
- $y^2=66 x^6+30 x^5+2 x^4+68 x^3+14 x^2+x+76$
- $y^2=47 x^6+71 x^5+28 x^4+70 x^3+x^2+71 x+61$
- $y^2=4 x^6+36 x^5+51 x^4+27 x^3+45 x^2+18 x+61$
- $y^2=55 x^6+59 x^5+50 x^4+68 x^3+48 x^2+26 x+11$
- $y^2=76 x^6+63 x^5+38 x^4+71 x^3+23 x^2+50 x+8$
- $y^2=47 x^6+32 x^5+78 x^4+38 x^3+65 x^2+x+1$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is 4.0.375525.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.79.az_lr | $2$ | (not in LMFDB) |