Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 5 x - 54 x^{2} + 395 x^{3} + 6241 x^{4}$ |
| Frobenius angles: | $\pm0.257422971303$, $\pm0.924089637970$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{97})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $72$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6588$ | $38131344$ | $244134810000$ | $1517311611146304$ | $9468613875466651428$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $85$ | $6109$ | $495160$ | $38955289$ | $3077166175$ | $243087180478$ | $19203901001545$ | $1517108759119249$ | $119851595228922280$ | $9468276088523285029$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=70 x^6+73 x^5+51 x^4+32 x^3+17 x^2+4 x+76$
- $y^2=8 x^6+18 x^5+x^4+21 x^3+x^2+11 x+38$
- $y^2=49 x^6+11 x^5+58 x^4+37 x^3+31 x^2+15 x+70$
- $y^2=42 x^6+58 x^5+25 x^4+27 x^3+75 x^2+52 x+6$
- $y^2=25 x^6+28 x^5+46 x^4+7 x^3+51 x^2+45 x+35$
- $y^2=77 x^6+47 x^5+5 x^4+29 x^3+29 x^2+77 x+5$
- $y^2=50 x^6+69 x^5+22 x^4+x^3+64 x^2+12 x+19$
- $y^2=31 x^5+68 x^4+5 x^3+6 x^2+57 x+5$
- $y^2=17 x^6+23 x^5+10 x^4+53 x^3+13 x^2+10 x+44$
- $y^2=60 x^6+33 x^5+17 x^4+65 x^3+25 x^2+34 x+56$
- $y^2=23 x^6+72 x^5+76 x^4+39 x^3+31 x^2+11 x+11$
- $y^2=78 x^6+4 x^5+58 x^4+37 x^3+78 x^2+51 x+15$
- $y^2=13 x^6+54 x^5+12 x^4+67 x^3+21 x^2+62 x+78$
- $y^2=36 x^6+59 x^5+59 x^4+78 x^3+31 x^2+2 x+77$
- $y^2=74 x^6+39 x^5+39 x^4+72 x^3+15 x^2+65 x+76$
- $y^2=67 x^6+31 x^5+17 x^4+61 x^3+62 x^2+75 x+4$
- $y^2=75 x^6+37 x^5+54 x^4+78 x^3+13 x^2+21 x+55$
- $y^2=52 x^6+32 x^5+19 x^4+76 x^3+55 x^2+36 x+18$
- $y^2=24 x^6+9 x^5+72 x^4+60 x^3+28 x^2+34 x+56$
- $y^2=64 x^6+55 x^5+25 x^4+6 x^3+3 x^2+15 x+44$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{3}}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{97})\). |
| The base change of $A$ to $\F_{79^{3}}$ is 1.493039.bou 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-291}) \)$)$ |
Base change
This is a primitive isogeny class.