Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 3 x + 79 x^{2} )^{2}$ |
$1 - 6 x + 167 x^{2} - 474 x^{3} + 6241 x^{4}$ | |
Frobenius angles: | $\pm0.446022689903$, $\pm0.446022689903$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $42$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5929$ | $40844881$ | $243763388176$ | $1516351870571769$ | $9467764116595864849$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $74$ | $6540$ | $494408$ | $38930644$ | $3076890014$ | $243088491966$ | $19203925239986$ | $1517108776788964$ | $119851594599213272$ | $9468276081092922300$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which all are hyperelliptic):
- $y^2=43 x^6+64 x^5+70 x^4+22 x^3+8 x^2+58 x+14$
- $y^2=4 x^6+56 x^5+41 x^3+56 x+4$
- $y^2=73 x^6+63 x^5+76 x^4+60 x^3+76 x^2+63 x+73$
- $y^2=53 x^6+24 x^5+17 x^4+59 x^3+17 x^2+24 x+53$
- $y^2=78 x^6+39 x^5+14 x^4+47 x^3+57 x^2+68 x+43$
- $y^2=5 x^6+11 x^5+27 x^4+60 x^3+27 x^2+11 x+5$
- $y^2=38 x^6+50 x^5+65 x^4+52 x^3+12 x^2+34 x+57$
- $y^2=37 x^6+71 x^5+71 x^4+61 x^3+71 x^2+71 x+37$
- $y^2=57 x^6+18 x^5+74 x^4+78 x^3+51 x^2+61 x+68$
- $y^2=58 x^6+18 x^5+8 x^4+41 x^3+66 x^2+48 x+59$
- $y^2=55 x^6+64 x^5+41 x^4+61 x^3+23 x^2+66 x+54$
- $y^2=65 x^6+41 x^5+43 x^4+35 x^3+49 x^2+66 x+9$
- $y^2=61 x^6+52 x^5+39 x^4+56 x^3+73 x^2+63 x+46$
- $y^2=x^6+70 x^5+43 x^4+3 x^3+15 x^2+21 x+36$
- $y^2=23 x^6+38 x^5+21 x^4+65 x^3+60 x^2+75 x+8$
- $y^2=54 x^6+52 x^5+42 x^4+41 x^3+41 x^2+64 x+32$
- $y^2=12 x^6+20 x^5+3 x^4+34 x^3+9 x^2+51 x+23$
- $y^2=15 x^6+65 x^5+24 x^4+2 x^3+30 x^2+77 x+32$
- $y^2=37 x^6+36 x^5+33 x^4+11 x^3+33 x^2+36 x+37$
- $y^2=48 x^6+59 x^5+73 x^4+18 x^3+73 x^2+59 x+48$
- and 22 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The isogeny class factors as 1.79.ad 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-307}) \)$)$ |
Base change
This is a primitive isogeny class.