Properties

Label 2.79.abe_ot
Base field $\F_{79}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{79}$
Dimension:  $2$
L-polynomial:  $( 1 - 15 x + 79 x^{2} )^{2}$
  $1 - 30 x + 383 x^{2} - 2370 x^{3} + 6241 x^{4}$
Frobenius angles:  $\pm0.180303926787$, $\pm0.180303926787$
Angle rank:  $1$ (numerical)
Jacobians:  $9$
Cyclic group of points:    no
Non-cyclic primes:   $5, 13$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4225$ $38130625$ $243265968400$ $1517731607705625$ $9468926435818305625$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $50$ $6108$ $493400$ $38966068$ $3077267750$ $243089362878$ $19203920899850$ $1517108837930788$ $119851595461800200$ $9468276072600661548$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 9 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{79}$.

Endomorphism algebra over $\F_{79}$
The isogeny class factors as 1.79.ap 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-91}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.79.a_acp$2$(not in LMFDB)
2.79.be_ot$2$(not in LMFDB)
2.79.p_fq$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.79.a_acp$2$(not in LMFDB)
2.79.be_ot$2$(not in LMFDB)
2.79.p_fq$3$(not in LMFDB)
2.79.a_cp$4$(not in LMFDB)
2.79.ap_fq$6$(not in LMFDB)