Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + x + 73 x^{2} )^{2}$ |
| $1 + 2 x + 147 x^{2} + 146 x^{3} + 5329 x^{4}$ | |
| Frobenius angles: | $\pm0.518638325776$, $\pm0.518638325776$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $56$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3, 5$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5625$ | $29975625$ | $151165440000$ | $805871447015625$ | $4297734799329515625$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $76$ | $5620$ | $388582$ | $28377508$ | $2073124156$ | $151335687310$ | $11047393221052$ | $806459990537668$ | $58871587196381686$ | $4297625836614462100$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=62 x^6+42 x^5+34 x^4+53 x^3+59 x^2+44 x+62$
- $y^2=17 x^6+46 x^5+45 x^4+68 x^3+61 x^2+66 x+6$
- $y^2=3 x^6+19 x^5+70 x^4+66 x^3+27 x^2+6 x+3$
- $y^2=3 x^6+49 x^5+18 x^4+58 x^3+39 x^2+50 x+31$
- $y^2=64 x^6+42 x^5+10 x^4+50 x^3+14 x^2+59 x+34$
- $y^2=5 x^6+41 x^5+53 x^4+41 x^3+44 x^2+32 x+11$
- $y^2=10 x^6+13 x^5+64 x^4+29 x^3+63 x^2+24 x+11$
- $y^2=34 x^6+58 x^5+16 x^4+68 x^3+18 x^2+3 x+32$
- $y^2=14 x^6+46 x^5+72 x^4+37 x^3+53 x^2+20 x+36$
- $y^2=44 x^6+71 x^5+50 x^4+29 x^3+50 x^2+50$
- $y^2=10 x^6+60 x^5+27 x^4+44 x^3+61 x^2+19 x+72$
- $y^2=5 x^6+67 x^5+12 x^4+57 x^3+69 x^2+48 x+62$
- $y^2=38 x^6+28 x^5+43 x^4+69 x^3+46 x^2+32 x+27$
- $y^2=28 x^6+9 x^5+70 x^4+64 x^3+50 x^2+18 x+40$
- $y^2=6 x^6+43 x^5+55 x^4+67 x^3+36 x^2+26 x+25$
- $y^2=39 x^6+17 x^5+55 x^4+24 x^3+23 x^2+27 x+67$
- $y^2=68 x^6+25 x^5+69 x^4+31 x^3+15 x^2+71 x+61$
- $y^2=34 x^6+30 x^5+37 x^4+6 x^3+35 x^2+51 x+31$
- $y^2=12 x^6+21 x^5+69 x^4+35 x^3+59 x^2+12 x+7$
- $y^2=56 x^6+31 x^5+16 x^4+38 x^3+2 x^2+29 x+56$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The isogeny class factors as 1.73.b 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-291}) \)$)$ |
Base change
This is a primitive isogeny class.