Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 18 x + 182 x^{2} - 1314 x^{3} + 5329 x^{4}$ |
| Frobenius angles: | $\pm0.128793700061$, $\pm0.457180132593$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.324400.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $162$ |
| Isomorphism classes: | 216 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4180$ | $28607920$ | $151355797780$ | $806214669638400$ | $4297590717905204500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $56$ | $5370$ | $389072$ | $28389598$ | $2073054656$ | $151335352410$ | $11047410225992$ | $806460121471678$ | $58871586679994216$ | $4297625833193273850$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 162 curves (of which all are hyperelliptic):
- $y^2=72 x^6+4 x^5+41 x^4+8 x^3+25 x^2+32 x+60$
- $y^2=11 x^6+29 x^5+58 x^4+29 x^3+52 x^2+56 x+24$
- $y^2=31 x^6+32 x^5+67 x^4+5 x^3+62 x^2+4 x+52$
- $y^2=54 x^6+63 x^5+33 x^4+19 x^3+58 x+69$
- $y^2=24 x^6+18 x^5+62 x^4+52 x^3+59 x^2+23 x+60$
- $y^2=60 x^6+30 x^5+20 x^4+8 x^3+38 x^2+7 x+41$
- $y^2=40 x^6+9 x^5+29 x^4+46 x^3+17 x^2+71 x+70$
- $y^2=45 x^6+17 x^5+62 x^4+64 x^3+36 x^2+10 x+16$
- $y^2=19 x^6+9 x^5+39 x^4+20 x^3+31 x^2+28 x+4$
- $y^2=33 x^6+13 x^5+26 x^4+18 x^3+29 x^2+2 x+15$
- $y^2=72 x^6+28 x^5+66 x^4+22 x^3+65 x^2+2 x+63$
- $y^2=26 x^6+21 x^5+57 x^4+70 x^3+45 x^2+49 x+12$
- $y^2=47 x^6+49 x^5+19 x^4+58 x^3+51 x^2+11 x+5$
- $y^2=14 x^6+5 x^5+13 x^3+44 x^2+65 x+4$
- $y^2=18 x^6+31 x^5+66 x^4+4 x^3+22 x^2+4 x+53$
- $y^2=67 x^6+12 x^5+21 x^4+51 x^3+7 x+30$
- $y^2=23 x^6+32 x^5+42 x^4+6 x^3+14 x^2+26 x+29$
- $y^2=7 x^6+59 x^5+70 x^4+40 x^3+30 x+45$
- $y^2=14 x^6+50 x^5+49 x^4+27 x^3+51 x^2+15 x+38$
- $y^2=44 x^6+63 x^5+17 x^4+65 x^3+54 x^2+8 x+37$
- and 142 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is 4.0.324400.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.73.s_ha | $2$ | (not in LMFDB) |