Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 18 x + 162 x^{2} - 1314 x^{3} + 5329 x^{4}$ |
| Frobenius angles: | $\pm0.0174767392761$, $\pm0.482523260724$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{65})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $32$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4160$ | $28387840$ | $150935620160$ | $805869459865600$ | $4297392951296744000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $56$ | $5330$ | $387992$ | $28377438$ | $2072959256$ | $151334226290$ | $11047394848952$ | $806459989083838$ | $58871586050896376$ | $4297625829703557650$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=38 x^6+58 x^5+29 x^4+55 x^3+53 x^2+44 x+48$
- $y^2=32 x^6+10 x^5+26 x^4+26 x^2+63 x+32$
- $y^2=4 x^6+29 x^5+32 x^4+11 x^3+9 x^2+62 x+14$
- $y^2=23 x^6+33 x^5+51 x^4+46 x^3+20 x^2+62 x+45$
- $y^2=25 x^6+64 x^5+71 x^4+45 x^3+35 x^2+61 x+39$
- $y^2=26 x^6+65 x^5+62 x^4+62 x^3+x^2+52 x+58$
- $y^2=28 x^6+56 x^5+8 x^4+14 x^3+7 x^2+69 x+54$
- $y^2=28 x^6+44 x^5+68 x^4+65 x^3+61 x^2+47 x+7$
- $y^2=68 x^6+44 x^5+3 x^4+55 x^3+20 x^2+7 x+55$
- $y^2=11 x^6+5 x^5+48 x^4+15 x^3+39 x^2+59 x+3$
- $y^2=66 x^6+16 x^5+4 x^4+22 x^3+63 x^2+6 x+72$
- $y^2=43 x^6+52 x^5+19 x^4+67 x^3+27 x^2+55 x+14$
- $y^2=22 x^6+9 x^5+3 x^4+3 x^2+64 x+22$
- $y^2=68 x^6+60 x^5+33 x^4+33 x^2+13 x+68$
- $y^2=13 x^6+20 x^5+64 x^3+52 x^2+35 x+64$
- $y^2=57 x^6+56 x^5+63 x^4+38 x^3+62 x^2+63 x+52$
- $y^2=56 x^6+2 x^5+57 x^4+49 x^3+2 x^2+28 x+10$
- $y^2=31 x^6+55 x^5+31 x^4+31 x^2+18 x+31$
- $y^2=44 x^6+18 x^5+23 x^4+69 x^3+54 x^2+12 x+62$
- $y^2=65 x^6+30 x^5+53 x^4+67 x^3+23 x^2+31 x+26$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{4}}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{65})\). |
| The base change of $A$ to $\F_{73^{4}}$ is 1.28398241.apkc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-65}) \)$)$ |
- Endomorphism algebra over $\F_{73^{2}}$
The base change of $A$ to $\F_{73^{2}}$ is the simple isogeny class 2.5329.a_apkc and its endomorphism algebra is \(\Q(i, \sqrt{65})\).
Base change
This is a primitive isogeny class.