Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 16 x + 166 x^{2} + 1136 x^{3} + 5041 x^{4}$ |
| Frobenius angles: | $\pm0.531698528350$, $\pm0.823401774164$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.8864000.4 |
| Galois group: | $D_{4}$ |
| Jacobians: | $196$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6360$ | $25796160$ | $127934967960$ | $645672106460160$ | $3255173720508975000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $88$ | $5118$ | $357448$ | $25408478$ | $1804190648$ | $128101579038$ | $9095111840168$ | $645753509467198$ | $45848501171586328$ | $3255243550295748798$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 196 curves (of which all are hyperelliptic):
- $y^2=25 x^6+30 x^5+2 x^4+28 x^3+33 x^2+47 x+35$
- $y^2=5 x^6+61 x^5+33 x^4+12 x^3+10 x^2+43 x+35$
- $y^2=7 x^6+48 x^5+21 x^4+16 x^3+16 x^2+26 x+68$
- $y^2=60 x^6+29 x^5+54 x^4+30 x^3+13 x^2+13 x+3$
- $y^2=69 x^5+49 x^4+67 x^3+42 x^2+18 x+35$
- $y^2=60 x^6+63 x^5+27 x^4+46 x^3+25 x^2+5 x+3$
- $y^2=64 x^6+34 x^5+11 x^4+35 x^3+51 x^2+63 x+6$
- $y^2=25 x^6+57 x^5+18 x^4+21 x^3+62 x^2+15 x+14$
- $y^2=65 x^6+39 x^5+60 x^4+22 x^3+25 x^2+69 x+16$
- $y^2=33 x^6+45 x^5+34 x^4+21 x^3+35 x^2+48 x+9$
- $y^2=31 x^6+51 x^5+23 x^4+53 x^3+4 x^2+29 x+7$
- $y^2=59 x^6+55 x^5+43 x^4+60 x^3+67 x^2+16 x+43$
- $y^2=61 x^6+4 x^5+22 x^4+26 x^3+13 x^2+65 x+19$
- $y^2=12 x^6+28 x^5+11 x^4+2 x^3+68 x^2+37 x+1$
- $y^2=x^6+32 x^5+35 x^4+70 x^3+49 x^2+20 x+59$
- $y^2=49 x^6+62 x^5+30 x^4+41 x^3+7 x^2+6 x+25$
- $y^2=57 x^6+39 x^5+59 x^4+4 x^3+28 x^2+67 x+45$
- $y^2=43 x^6+66 x^5+68 x^4+49 x^3+69 x^2+15 x+8$
- $y^2=45 x^6+2 x^5+38 x^4+25 x^3+43 x^2+61 x+53$
- $y^2=13 x^6+65 x^5+42 x^4+30 x^3+63 x^2+46 x+41$
- and 176 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is 4.0.8864000.4. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.71.aq_gk | $2$ | (not in LMFDB) |