Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 14 x + 71 x^{2} )( 1 - 4 x + 71 x^{2} )$ |
| $1 - 18 x + 198 x^{2} - 1278 x^{3} + 5041 x^{4}$ | |
| Frobenius angles: | $\pm0.187913521440$, $\pm0.423719104038$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $72$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3944$ | $25777984$ | $128468405000$ | $645788405377024$ | $3255251309812013384$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $54$ | $5114$ | $358938$ | $25413054$ | $1804233654$ | $128101037978$ | $9095129460954$ | $645753547970494$ | $45848500119584118$ | $3255243545006293754$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=56 x^6+63 x^5+21 x^4+38 x^3+2 x^2+32 x+62$
- $y^2=49 x^6+39 x^5+57 x^4+35 x^3+4 x^2+51 x+9$
- $y^2=63 x^6+40 x^5+30 x^4+40 x^3+2 x^2+10 x+3$
- $y^2=58 x^6+20 x^5+11 x^4+23 x^3+9 x^2+68 x+22$
- $y^2=69 x^6+66 x^5+33 x^4+67 x^3+61 x^2+3 x+38$
- $y^2=58 x^6+59 x^5+14 x^4+13 x^3+59 x^2+52 x+19$
- $y^2=55 x^6+19 x^5+69 x^4+51 x^3+31 x^2+20 x+40$
- $y^2=70 x^6+60 x^5+7 x^4+31 x^3+52 x^2+3 x+26$
- $y^2=9 x^6+6 x^5+47 x^4+27 x^3+5 x^2+12 x+21$
- $y^2=12 x^6+5 x^5+49 x^4+33 x^3+5 x^2+30 x+66$
- $y^2=38 x^6+53 x^5+32 x^4+66 x^3+48 x^2+30 x+28$
- $y^2=56 x^6+21 x^5+51 x^3+54 x^2+15 x+7$
- $y^2=47 x^6+39 x^5+5 x^4+47 x^3+48 x^2+13 x+51$
- $y^2=28 x^6+29 x^5+13 x^4+53 x^3+13 x^2+54 x+51$
- $y^2=22 x^6+40 x^5+23 x^4+46 x^3+47 x^2+3 x$
- $y^2=13 x^6+50 x^5+12 x^4+47 x^3+46 x^2+23 x+13$
- $y^2=67 x^6+27 x^5+18 x^4+12 x^3+50 x^2+16 x+65$
- $y^2=63 x^6+13 x^5+39 x^4+56 x^3+24 x^2+11 x+59$
- $y^2=57 x^6+62 x^5+59 x^4+56 x^3+56 x^2+28$
- $y^2=3 x^6+64 x^5+6 x^4+41 x^3+13 x^2+9 x+36$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$| The isogeny class factors as 1.71.ao $\times$ 1.71.ae and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.71.ak_di | $2$ | (not in LMFDB) |
| 2.71.k_di | $2$ | (not in LMFDB) |
| 2.71.s_hq | $2$ | (not in LMFDB) |