Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 16 x + 174 x^{2} - 1136 x^{3} + 5041 x^{4}$ |
| Frobenius angles: | $\pm0.199257865384$, $\pm0.455598300313$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.108608.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $264$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4064$ | $25879552$ | $128404685024$ | $645742026702848$ | $3255298369688053984$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $56$ | $5134$ | $358760$ | $25411230$ | $1804259736$ | $128101348270$ | $9095127112904$ | $645753494116158$ | $45848499970223864$ | $3255243548033776974$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 264 curves (of which all are hyperelliptic):
- $y^2=69 x^6+5 x^5+40 x^4+35 x^3+37 x^2+3 x+52$
- $y^2=45 x^6+47 x^5+49 x^4+5 x^3+62 x^2+28 x+8$
- $y^2=45 x^6+24 x^5+64 x^4+12 x^3+26 x^2+51 x+7$
- $y^2=33 x^6+55 x^5+18 x^4+27 x^3+48 x^2+49 x+15$
- $y^2=21 x^6+46 x^5+13 x^4+55 x^3+34 x^2+31 x+43$
- $y^2=39 x^6+36 x^5+13 x^4+7 x^3+5 x^2+50 x+39$
- $y^2=34 x^6+56 x^5+53 x^4+68 x^3+19 x^2+10 x+8$
- $y^2=34 x^6+7 x^5+x^4+47 x^3+64 x^2+64 x+47$
- $y^2=33 x^6+66 x^5+64 x^4+39 x^3+63 x^2+18 x+45$
- $y^2=x^6+69 x^5+34 x^4+20 x^3+37 x^2+26 x+7$
- $y^2=65 x^6+46 x^5+27 x^4+59 x^3+53 x^2+56 x+58$
- $y^2=46 x^6+36 x^5+38 x^4+11 x^3+13 x^2+5 x+59$
- $y^2=20 x^6+23 x^5+59 x^4+66 x^3+40 x^2+34 x+60$
- $y^2=70 x^6+28 x^5+26 x^4+3 x^3+61 x^2+33 x+2$
- $y^2=70 x^6+17 x^5+55 x^4+7 x^3+21 x^2+26 x+40$
- $y^2=13 x^6+35 x^5+24 x^4+12 x^3+53 x^2+15 x+23$
- $y^2=64 x^6+7 x^5+28 x^4+61 x^3+31 x^2+59 x+42$
- $y^2=57 x^6+41 x^5+26 x^4+65 x^3+34 x^2+31 x+12$
- $y^2=21 x^6+14 x^5+20 x^4+45 x^3+58 x^2+25 x+13$
- $y^2=54 x^6+49 x^4+8 x^3+34 x^2+28 x+31$
- and 244 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is 4.0.108608.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.71.q_gs | $2$ | (not in LMFDB) |