Properties

Label 2.71.aq_gs
Base field $\F_{71}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{71}$
Dimension:  $2$
L-polynomial:  $1 - 16 x + 174 x^{2} - 1136 x^{3} + 5041 x^{4}$
Frobenius angles:  $\pm0.199257865384$, $\pm0.455598300313$
Angle rank:  $2$ (numerical)
Number field:  4.0.108608.1
Galois group:  $D_{4}$
Jacobians:  $264$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4064$ $25879552$ $128404685024$ $645742026702848$ $3255298369688053984$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $56$ $5134$ $358760$ $25411230$ $1804259736$ $128101348270$ $9095127112904$ $645753494116158$ $45848499970223864$ $3255243548033776974$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 264 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{71}$.

Endomorphism algebra over $\F_{71}$
The endomorphism algebra of this simple isogeny class is 4.0.108608.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.71.q_gs$2$(not in LMFDB)