Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 6 x + 71 x^{2} )( 1 - 3 x + 71 x^{2} )$ |
$1 - 9 x + 160 x^{2} - 639 x^{3} + 5041 x^{4}$ | |
Frobenius angles: | $\pm0.384128557438$, $\pm0.443031714434$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $40$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4554$ | $26640900$ | $128700794376$ | $645530959101600$ | $3254975453396853054$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $63$ | $5281$ | $359586$ | $25402921$ | $1804080753$ | $128100213178$ | $9095129260623$ | $645753573694321$ | $45848500348011246$ | $3255243547057117801$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=40 x^6+6 x^5+8 x^4+67 x^3+31 x^2+32 x+3$
- $y^2=46 x^6+69 x^5+26 x^4+x^3+40 x^2+12 x+66$
- $y^2=46 x^6+23 x^5+3 x^4+43 x^3+13 x^2+29 x$
- $y^2=21 x^6+65 x^5+60 x^4+68 x^3+2 x^2+25 x+70$
- $y^2=63 x^6+56 x^5+47 x^4+68 x^3+54 x^2+8 x+11$
- $y^2=17 x^6+51 x^5+40 x^4+65 x^3+64 x^2+14 x+43$
- $y^2=20 x^6+35 x^5+27 x^4+23 x^3+45 x^2+51 x+60$
- $y^2=49 x^6+48 x^5+16 x^4+19 x^3+37 x^2+15 x+9$
- $y^2=30 x^6+69 x^5+31 x^4+32 x^3+17 x^2+44 x+39$
- $y^2=24 x^6+53 x^5+8 x^4+43 x^3+x^2+32 x+34$
- $y^2=2 x^6+29 x^5+8 x^4+6 x^3+47 x^2+41 x+1$
- $y^2=20 x^6+39 x^5+60 x^4+15 x^3+19 x^2+46 x+68$
- $y^2=49 x^6+38 x^5+26 x^4+38 x^3+47 x^2+27 x+4$
- $y^2=13 x^6+3 x^5+12 x^4+5 x^3+17 x^2+17 x+11$
- $y^2=63 x^6+56 x^5+21 x^4+16 x^3+65 x^2+22$
- $y^2=15 x^6+13 x^5+6 x^4+9 x^3+45 x^2+64 x+31$
- $y^2=26 x^6+64 x^5+67 x^4+10 x^3+17 x^2+34 x+16$
- $y^2=61 x^6+70 x^5+x^4+63 x^3+26 x^2+51 x+19$
- $y^2=13 x^6+61 x^5+45 x^4+15 x^3+3 x^2+34 x$
- $y^2=45 x^6+28 x^5+46 x^4+28 x^3+49 x^2+65 x+23$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$The isogeny class factors as 1.71.ag $\times$ 1.71.ad and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.ad_eu | $2$ | (not in LMFDB) |
2.71.d_eu | $2$ | (not in LMFDB) |
2.71.j_ge | $2$ | (not in LMFDB) |