Invariants
Base field: | $\F_{7}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 3 x + 7 x^{2} )( 1 + 5 x + 7 x^{2} )$ |
$1 + 2 x - x^{2} + 14 x^{3} + 49 x^{4}$ | |
Frobenius angles: | $\pm0.308124534521$, $\pm0.893852192495$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $4$ |
Isomorphism classes: | 12 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $65$ | $2145$ | $138320$ | $5888025$ | $281534825$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $10$ | $44$ | $400$ | $2452$ | $16750$ | $117326$ | $820690$ | $5768548$ | $40350640$ | $282540764$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=4 x^6+3 x^5+5 x^4+3 x^3+x+6$
- $y^2=2 x^6+2 x^5+3 x^4+5 x^3+5 x^2+3$
- $y^2=4 x^6+5 x^5+x^4+6 x^3+x^2+5 x+4$
- $y^2=4 x^6+2 x^5+5 x^4+6 x^3+x+1$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{7}$.
Endomorphism algebra over $\F_{7}$The isogeny class factors as 1.7.ad $\times$ 1.7.f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.