Properties

Label 2.7.ag_v
Base field $\F_{7}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{7}$
Dimension:  $2$
L-polynomial:  $1 - 6 x + 21 x^{2} - 42 x^{3} + 49 x^{4}$
Frobenius angles:  $\pm0.185925252552$, $\pm0.403118263531$
Angle rank:  $2$ (numerical)
Number field:  4.0.13888.1
Galois group:  $D_{4}$
Jacobians:  $2$

This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $23$ $2737$ $130916$ $5848969$ $282342503$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $2$ $56$ $380$ $2436$ $16802$ $118118$ $826142$ $5768644$ $40342052$ $282411416$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{7}$.

Endomorphism algebra over $\F_{7}$
The endomorphism algebra of this simple isogeny class is 4.0.13888.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.7.g_v$2$2.49.g_bj