Properties

Label 2.7.ae_l
Base Field $\F_{7}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{7}$
Dimension:  $2$
L-polynomial:  $1 - 4 x + 11 x^{2} - 28 x^{3} + 49 x^{4}$
Frobenius angles:  $\pm0.158901191781$, $\pm0.538942184569$
Angle rank:  $2$ (numerical)
Number field:  4.0.138768.1
Galois group:  $D_{4}$
Jacobians:  2

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 29 2697 112868 5655609 288523349 13981636368 678495801173 33235712260137 1628982534424868 79792878597781497

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 4 56 328 2356 17164 118838 823876 5765284 40367704 282477416

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{7}$
The endomorphism algebra of this simple isogeny class is 4.0.138768.1.
All geometric endomorphisms are defined over $\F_{7}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.7.e_l$2$2.49.g_af