Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 4 x + 13 x^{2} + 268 x^{3} + 4489 x^{4}$ |
| Frobenius angles: | $\pm0.310501921586$, $\pm0.797897749032$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.433025.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $276$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $5$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4775$ | $20203025$ | $90672742400$ | $406347987505625$ | $1822722350839644375$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $72$ | $4500$ | $301476$ | $20165028$ | $1350039592$ | $90458307750$ | $6060706091736$ | $406067661072708$ | $27206534937733212$ | $1822837804412012500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 276 curves (of which all are hyperelliptic):
- $y^2=14 x^6+7 x^5+40 x^4+38 x^3+30 x^2+27 x+24$
- $y^2=62 x^6+23 x^5+47 x^4+46 x^3+56 x^2+21 x+37$
- $y^2=61 x^6+24 x^5+15 x^4+63 x^3+66 x^2+32 x+3$
- $y^2=11 x^6+56 x^5+14 x^4+52 x^3+39 x^2+34 x+26$
- $y^2=22 x^6+18 x^5+55 x^4+52 x^3+18 x^2+5 x+44$
- $y^2=54 x^6+43 x^5+61 x^4+49 x^3+17 x^2+47 x+53$
- $y^2=54 x^6+19 x^5+26 x^4+66 x^3+43 x^2+49 x+16$
- $y^2=x^6+59 x^5+30 x^4+14 x^3+39 x^2+61 x+22$
- $y^2=15 x^6+19 x^5+30 x^4+5 x^3+45 x^2+21 x+37$
- $y^2=39 x^6+53 x^5+8 x^3+59 x^2+28 x+28$
- $y^2=64 x^6+48 x^5+52 x^4+45 x^3+49 x^2+3 x+33$
- $y^2=9 x^6+43 x^5+42 x^4+16 x^3+51 x^2+42 x+12$
- $y^2=11 x^6+11 x^5+60 x^4+12 x^3+32 x^2+16 x+46$
- $y^2=18 x^6+18 x^5+17 x^4+45 x^3+37 x^2+45 x+17$
- $y^2=46 x^6+35 x^5+25 x^4+58 x^3+22 x^2+2$
- $y^2=39 x^6+24 x^5+47 x^4+20 x^3+38 x^2+65 x+28$
- $y^2=58 x^6+x^5+26 x^4+32 x^3+53 x^2+39 x+28$
- $y^2=10 x^6+17 x^5+28 x^4+8 x^3+63 x^2+36 x+21$
- $y^2=27 x^6+4 x^5+39 x^4+38 x^3+46 x^2+66 x+7$
- $y^2=17 x^6+13 x^5+22 x^4+28 x^3+45 x^2+5 x+31$
- and 256 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is 4.0.433025.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.67.ae_n | $2$ | (not in LMFDB) |