Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 5 x + 67 x^{2} )( 1 - 3 x + 67 x^{2} )$ |
| $1 - 8 x + 149 x^{2} - 536 x^{3} + 4489 x^{4}$ | |
| Frobenius angles: | $\pm0.401201937998$, $\pm0.441336869475$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $52$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4095$ | $21224385$ | $90897402960$ | $405875293940025$ | $1822659584237466975$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $4724$ | $302220$ | $20141572$ | $1349993100$ | $90458479046$ | $6060720394740$ | $406067705551108$ | $27206533955137140$ | $1822837801127574164$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):
- $y^2=40 x^6+18 x^5+40 x^4+52 x^3+36 x^2+32 x+64$
- $y^2=63 x^6+47 x^5+66 x^4+x^3+46 x^2+24 x+7$
- $y^2=11 x^6+29 x^5+12 x^4+49 x^3+41 x^2+4 x+46$
- $y^2=25 x^6+21 x^5+33 x^4+39 x^3+54 x^2+59 x+14$
- $y^2=45 x^6+11 x^5+53 x^4+5 x^3+43 x^2+46 x+5$
- $y^2=46 x^6+3 x^5+17 x^4+43 x^3+54 x^2+5 x+11$
- $y^2=35 x^6+17 x^5+17 x^4+16 x^3+59 x^2+55 x+26$
- $y^2=9 x^6+8 x^5+52 x^4+x^3+38 x^2+57 x+62$
- $y^2=55 x^6+46 x^5+38 x^4+42 x^3+12 x^2+7 x+33$
- $y^2=12 x^6+16 x^5+11 x^4+6 x^3+48 x^2+35 x+11$
- $y^2=58 x^6+27 x^5+6 x^4+63 x^3+6 x^2+27 x+58$
- $y^2=51 x^6+4 x^5+17 x^4+45 x^3+59 x^2+9 x+13$
- $y^2=19 x^6+66 x^5+63 x^4+52 x^3+57 x^2+44 x+54$
- $y^2=57 x^6+11 x^5+52 x^4+24 x^3+48 x^2+51 x+57$
- $y^2=52 x^6+23 x^5+24 x^4+56 x^3+26 x^2+47 x+52$
- $y^2=9 x^6+5 x^5+56 x^4+42 x^3+26 x^2+8 x+22$
- $y^2=44 x^6+51 x^5+58 x^4+2 x^3+12 x^2+46 x+57$
- $y^2=8 x^6+26 x^5+19 x^4+31 x^3+37 x^2+29 x+3$
- $y^2=18 x^6+7 x^5+43 x^4+22 x^3+46 x^2+42 x+61$
- $y^2=55 x^6+33 x^5+19 x^4+42 x^3+25 x^2+64 x+4$
- and 32 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The isogeny class factors as 1.67.af $\times$ 1.67.ad and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.