Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 8 x + 102 x^{2} - 536 x^{3} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.267344638064$, $\pm0.557243660857$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.346896.1 |
Galois group: | $D_{4}$ |
Jacobians: | $216$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4048$ | $20790528$ | $90557131984$ | $406108202717184$ | $1822964170235813968$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $4630$ | $301092$ | $20153134$ | $1350218700$ | $90458473030$ | $6060702391860$ | $406067635714654$ | $27206534629898844$ | $1822837805342188150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 216 curves (of which all are hyperelliptic):
- $y^2=x^6+60 x^5+34 x^3+38 x^2+10 x+15$
- $y^2=11 x^6+51 x^5+11 x^4+28 x^3+36 x^2+35 x+38$
- $y^2=54 x^6+25 x^5+21 x^4+58 x^3+65 x^2+7 x+11$
- $y^2=51 x^6+12 x^5+39 x^4+7 x^3+33 x^2+29 x+7$
- $y^2=11 x^6+30 x^5+19 x^4+52 x^3+x^2+59 x+43$
- $y^2=x^6+38 x^5+6 x^4+28 x^3+18 x^2+57 x+9$
- $y^2=52 x^6+13 x^5+6 x^4+61 x^3+66 x^2+40 x+38$
- $y^2=32 x^6+65 x^5+56 x^4+16 x^3+55 x^2+24 x+31$
- $y^2=33 x^6+45 x^5+20 x^4+12 x^3+34 x^2+60 x+27$
- $y^2=44 x^6+14 x^5+50 x^4+39 x^3+52 x^2+51 x+66$
- $y^2=18 x^6+35 x^5+30 x^4+26 x^3+59 x^2+35 x+7$
- $y^2=47 x^6+53 x^5+28 x^4+28 x^3+18 x^2+35 x+55$
- $y^2=38 x^6+18 x^5+26 x^4+63 x^3+20 x^2+x+32$
- $y^2=30 x^6+52 x^5+57 x^4+36 x^3+56 x^2+51 x+42$
- $y^2=43 x^6+16 x^5+20 x^4+49 x^3+51 x+66$
- $y^2=42 x^6+40 x^5+38 x^4+31 x^3+28 x^2+11 x+8$
- $y^2=45 x^6+38 x^5+12 x^4+44 x^3+24 x^2+2 x+11$
- $y^2=10 x^6+33 x^5+38 x^4+57 x^3+66 x^2+24 x+27$
- $y^2=39 x^6+18 x^5+2 x^4+14 x^3+56 x^2+63 x+11$
- $y^2=48 x^6+4 x^5+27 x^4+43 x^3+14 x^2+10 x+42$
- and 196 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is 4.0.346896.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.i_dy | $2$ | (not in LMFDB) |