Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 26 x^{2} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.281077932643$, $\pm0.718922067357$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{3}, \sqrt{-10})\) |
Galois group: | $C_2^2$ |
Jacobians: | $440$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4516$ | $20394256$ | $90458049604$ | $406402376011776$ | $1822837806788795236$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $68$ | $4542$ | $300764$ | $20167726$ | $1350125108$ | $90457717038$ | $6060711605324$ | $406067620314718$ | $27206534396294948$ | $1822837809025829022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 440 curves (of which all are hyperelliptic):
- $y^2=55 x^6+2 x^5+2 x^4+42 x^3+5 x^2+15 x+33$
- $y^2=43 x^6+4 x^5+4 x^4+17 x^3+10 x^2+30 x+66$
- $y^2=4 x^6+54 x^5+16 x^4+4 x^3+8 x^2+9 x+64$
- $y^2=8 x^6+41 x^5+32 x^4+8 x^3+16 x^2+18 x+61$
- $y^2=47 x^6+12 x^5+43 x^4+19 x^3+65 x^2+15 x+40$
- $y^2=27 x^6+24 x^5+19 x^4+38 x^3+63 x^2+30 x+13$
- $y^2=59 x^6+3 x^5+52 x^4+4 x^3+45 x^2+62 x+34$
- $y^2=51 x^6+6 x^5+37 x^4+8 x^3+23 x^2+57 x+1$
- $y^2=57 x^6+14 x^5+43 x^4+7 x^3+42 x^2+49 x+26$
- $y^2=47 x^6+28 x^5+19 x^4+14 x^3+17 x^2+31 x+52$
- $y^2=55 x^6+26 x^5+37 x^3+26 x+12$
- $y^2=16 x^6+10 x^5+57 x^4+5 x^3+27 x^2+36 x+12$
- $y^2=30 x^6+18 x^5+41 x^4+21 x^3+42 x^2+32 x+11$
- $y^2=60 x^6+36 x^5+15 x^4+42 x^3+17 x^2+64 x+22$
- $y^2=2 x^6+24 x^5+29 x^4+62 x^3+12 x^2+59 x+39$
- $y^2=52 x^6+26 x^5+39 x^4+9 x^3+7 x^2+10 x+62$
- $y^2=50 x^6+37 x^5+38 x^4+9 x^3+2 x^2+40 x+65$
- $y^2=33 x^6+7 x^5+9 x^4+18 x^3+4 x^2+13 x+63$
- $y^2=8 x^6+61 x^5+57 x^4+47 x^3+62 x^2+32 x+1$
- $y^2=14 x^6+5 x^5+35 x^4+32 x^3+64 x^2+7 x+17$
- and 420 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{2}}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{3}, \sqrt{-10})\). |
The base change of $A$ to $\F_{67^{2}}$ is 1.4489.ba 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-30}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.a_aba | $4$ | (not in LMFDB) |
2.67.as_gt | $12$ | (not in LMFDB) |
2.67.s_gt | $12$ | (not in LMFDB) |