Invariants
| Base field: | $\F_{2^{6}}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 13 x + 64 x^{2} )( 1 + 13 x + 64 x^{2} )$ |
| Frobenius angles: | $\pm0.198106042756$, $\pm0.801893957244$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | 426 |
This isogeny class is not simple.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
This isogeny class contains the Jacobians of 426 curves, and hence is principally polarizable:
- $y^2+(x^2+x)y=ax^5+(a^3+a^2+a)x^3+(a^2+1)x^2+(a^3+1)x$
- $y^2+(x^2+x)y=ax^5+(a^5+a^3+a^2+a)x^4+(a^3+a^2+a)x^3+(a^5+a^3+a+1)x^2+(a^3+1)x$
- $y^2+(x^2+x)y=(a^5+a^4+a^2+a+1)x^5+(a^3+a^2+a+1)x^3+(a^5+a^3+a)x^2+(a^4+a)x$
- $y^2+(x^2+x)y=(a^5+a^4+a^2+a+1)x^5+(a^4+a^3+1)x^4+(a^3+a^2+a+1)x^3+(a^5+a^4+a+1)x^2+(a^4+a)x$
- $y^2+(x^2+x)y=(a^4+a+1)x^5+(a^3+a^2+a)x^3+(a^5+a^4+a+1)x^2+(a^5+a^3+a^2+a)x$
- $y^2+(x^2+x)y=(a^4+a+1)x^5+(a^5+a^3+a^2)x^4+(a^3+a^2+a)x^3+(a^4+a^3+a^2+a+1)x^2+(a^5+a^3+a^2+a)x$
- $y^2+(x^2+x)y=a^2x^5+(a^3+a^2+a+1)x^3+(a^4+1)x^2+(a^4+a^3+a)x$
- $y^2+(x^2+x)y=a^2x^5+(a^5+a^3+1)x^4+(a^3+a^2+a+1)x^3+(a^5+a^4+a^3)x^2+(a^4+a^3+a)x$
- $y^2+(x^2+x)y=a^4x^5+(a^3+a^2+a)x^3+(a^5+a^3)x^2+(a^5+a^4+a^2+a)x$
- $y^2+(x^2+x)y=a^4x^5+(a^5+a^4+a^3+a+1)x^4+(a^3+a^2+a)x^3+(a^4+a+1)x^2+(a^5+a^4+a^2+a)x$
- $y^2+(x^2+x)y=(a^5+a^4+a)x^5+(a^3+a^2+a+1)x^3+(a+1)x^2+(a^5+a^4+a^3+a^2+a)x$
- $y^2+(x^2+x)y=(a^5+a^4+a)x^5+(a^4+a^3+a^2+1)x^4+(a^3+a^2+a+1)x^3+(a^4+a^3+a^2+a)x^2+(a^5+a^4+a^3+a^2+a)x$
- $y^2+(x^2+x+a^5+a^3+a)y=(a+1)x^5+(a+1)x^3+a^4x^2+(a^5+a^4+a^3+1)x+a^5+a+1$
- $y^2+(x^2+x+a^5+a^3+a)y=(a+1)x^5+(a^5+a^3+a)x^4+(a+1)x^3+(a^5+a^4+a^3+a)x^2+(a^5+a^4+a^3+1)x+a^4+a+1$
- $y^2+(x^2+x+a^5+a^3+a^2+a)y=(a^4+a^2+1)x^5+(a^5+a^4)x^3+(a^3+a)x+a^3+a+1$
- $y^2+(x^2+x+a^5+a^3+a^2+a)y=(a^4+a^2+1)x^5+(a^5+a^4+a^3+a)x^4+(a^5+a^4)x^3+(a^5+a^4+a^3+a)x^2+(a^3+a)x+a^4+a^2+a+1$
- $y^2+(x^2+x)y=(a^5+a^2+1)x^5+(a^5+a^4+a^3+a+1)x^3+(a^3+a+1)x^2+(a^4+a^2+1)x$
- $y^2+(x^2+x)y=(a^5+a^2+1)x^5+(a^3+a)x^4+(a^5+a^4+a^3+a+1)x^3+x^2+(a^4+a^2+1)x$
- $y^2+(x^2+x+a^5+a^4+a^3+a+1)y=(a^2+1)x^5+(a^2+1)x^3+(a^5+a^4+a^2+a+1)x^2+(a^4+a^2)x+a^4+a^3+a+1$
- $y^2+(x^2+x+a^5+a^4+a^3+a+1)y=(a^2+1)x^5+(a^5+a^4+a^3+a+1)x^4+(a^2+1)x^3+(a^3+a^2)x^2+(a^4+a^2)x+a^4+a^3+a^2+1$
- and 406 more
Point counts of the abelian variety
| $r$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $A(\F_{q^r})$ | 4056 | 16451136 | 68719911624 | 281693525577984 | 1152921502463163576 | 4722426253610370317376 | 19342813113840728124788136 | 79228157538525417810440193024 | 324518553658426719376279169811864 | 1329227990841918495641742802133107776 |
| $r$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $C(\F_{q^r})$ | 65 | 4015 | 262145 | 16790239 | 1073741825 | 68720346511 | 4398046511105 | 281474959033279 | 18014398509481985 | 1152921500319480175 |
Decomposition and endomorphism algebra
Endomorphism algebra over $\F_{2^{6}}$| The isogeny class factors as 1.64.an $\times$ 1.64.n and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{2^{12}}$ is 1.4096.abp 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-87}) \)$)$ |
Base change
This is a primitive isogeny class.