Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 15 x + 147 x^{2} + 915 x^{3} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.539015567786$, $\pm0.816282280434$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.436525.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $72$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4799$ | $14104261$ | $51408524459$ | $191685722153125$ | $713323654676337104$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $77$ | $3791$ | $226487$ | $13844283$ | $844573502$ | $51521141711$ | $3142737945767$ | $191707300213843$ | $11694146386167677$ | $713342910761322806$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=15 x^6+22 x^5+30 x^4+16 x^3+45 x^2+50 x+24$
- $y^2=60 x^6+46 x^5+7 x^4+11 x^3+13 x^2+29 x+47$
- $y^2=20 x^6+3 x^5+21 x^4+59 x^3+29 x^2+54 x+47$
- $y^2=26 x^6+45 x^5+21 x^4+26 x^3+56 x^2+13 x+8$
- $y^2=x^6+40 x^5+30 x^4+41 x^3+6 x^2+27 x+32$
- $y^2=22 x^6+4 x^5+54 x^4+x^3+12 x^2+50 x+18$
- $y^2=27 x^6+3 x^5+5 x^4+26 x^3+9 x^2+44 x+45$
- $y^2=2 x^6+32 x^5+16 x^4+18 x^3+11 x^2+58 x+18$
- $y^2=41 x^6+41 x^5+7 x^4+58 x^3+40 x^2+21 x+16$
- $y^2=25 x^6+42 x^5+58 x^4+14 x^3+28 x^2+19 x+10$
- $y^2=30 x^6+41 x^5+24 x^4+8 x^3+29 x^2+35 x+5$
- $y^2=52 x^6+20 x^5+55 x^4+35 x^3+29 x^2+21 x+19$
- $y^2=34 x^6+15 x^5+25 x^4+8 x^3+34 x^2+32 x+36$
- $y^2=19 x^6+14 x^5+40 x^4+19 x^3+6 x^2+42 x+31$
- $y^2=26 x^6+41 x^5+24 x^4+49 x^3+43 x^2+56 x+19$
- $y^2=43 x^6+42 x^5+39 x^4+10 x^3+55 x^2+22 x+58$
- $y^2=31 x^6+20 x^5+24 x^4+9 x^3+37 x^2+45 x+12$
- $y^2=7 x^6+16 x^5+53 x^4+13 x^3+50 x^2+19 x+55$
- $y^2=36 x^5+13 x^4+3 x^3+12 x^2+25 x+30$
- $y^2=43 x^6+4 x^5+8 x^4+38 x^3+x^2+23 x+22$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is 4.0.436525.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.ap_fr | $2$ | (not in LMFDB) |