Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 118 x^{2} + 244 x^{3} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.483110634955$, $\pm0.600030583736$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.859136.2 |
Galois group: | $D_{4}$ |
Jacobians: | $126$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4088$ | $14684096$ | $51379983032$ | $191574824999936$ | $713379132134089848$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $66$ | $3942$ | $226362$ | $13836270$ | $844639186$ | $51520664982$ | $3142741255818$ | $191707310178654$ | $11694146060090082$ | $713342911430629702$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 126 curves (of which all are hyperelliptic):
- $y^2=40 x^6+49 x^5+20 x^4+36 x^3+16 x^2+16 x+7$
- $y^2=25 x^6+39 x^5+16 x^4+x^3+60 x^2+48 x+32$
- $y^2=33 x^5+7 x^4+56 x^3+4 x^2+60 x+57$
- $y^2=10 x^6+41 x^5+24 x^4+27 x^3+17 x^2+x+45$
- $y^2=27 x^6+40 x^5+59 x^4+56 x^3+58 x^2+27$
- $y^2=47 x^6+50 x^5+8 x^4+58 x^3+51 x^2+17 x+35$
- $y^2=54 x^6+14 x^5+53 x^4+57 x^3+26 x^2+38 x+8$
- $y^2=30 x^6+16 x^5+5 x^4+58 x^3+36 x^2+24 x+26$
- $y^2=45 x^6+45 x^5+50 x^4+4 x^3+25 x^2+6$
- $y^2=20 x^6+27 x^5+39 x^4+21 x^3+34 x^2+9 x+45$
- $y^2=38 x^6+37 x^5+18 x^4+30 x^3+27 x^2+20 x+25$
- $y^2=41 x^6+30 x^5+40 x^4+10 x^3+23 x^2+41 x+16$
- $y^2=15 x^6+30 x^5+41 x^4+28 x^3+18 x^2+16 x+27$
- $y^2=46 x^6+45 x^5+44 x^4+x^3+29 x^2+48 x+25$
- $y^2=54 x^6+44 x^5+49 x^4+24 x^3+16 x^2+54 x+52$
- $y^2=48 x^6+33 x^5+31 x^4+16 x^3+53 x^2+48 x+26$
- $y^2=5 x^6+29 x^5+31 x^4+17 x^3+9 x^2+43 x+17$
- $y^2=24 x^5+35 x^4+31 x^3+39 x^2+42 x+23$
- $y^2=26 x^6+12 x^5+49 x^4+25 x^3+34 x^2+6 x+37$
- $y^2=38 x^6+41 x^5+47 x^4+55 x^3+60 x^2+55 x+56$
- and 106 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is 4.0.859136.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.61.ae_eo | $2$ | (not in LMFDB) |