Properties

Label 2.61.e_eo
Base field $\F_{61}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{61}$
Dimension:  $2$
L-polynomial:  $1 + 4 x + 118 x^{2} + 244 x^{3} + 3721 x^{4}$
Frobenius angles:  $\pm0.483110634955$, $\pm0.600030583736$
Angle rank:  $2$ (numerical)
Number field:  4.0.859136.2
Galois group:  $D_{4}$
Jacobians:  $126$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4088$ $14684096$ $51379983032$ $191574824999936$ $713379132134089848$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $66$ $3942$ $226362$ $13836270$ $844639186$ $51520664982$ $3142741255818$ $191707310178654$ $11694146060090082$ $713342911430629702$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 126 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{61}$.

Endomorphism algebra over $\F_{61}$
The endomorphism algebra of this simple isogeny class is 4.0.859136.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.61.ae_eo$2$(not in LMFDB)