Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 4 x - 34 x^{2} + 244 x^{3} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.261223778835$, $\pm0.887152766258$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.384000.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $156$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3936$ | $13539840$ | $51794457696$ | $191793675018240$ | $713361159623166816$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $66$ | $3638$ | $228186$ | $13852078$ | $844617906$ | $51520518758$ | $3142736991306$ | $191707312810078$ | $11694145779241506$ | $713342913799701398$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 156 curves (of which all are hyperelliptic):
- $y^2=43 x^6+47 x^5+21 x^4+27 x^3+41 x^2+36 x+52$
- $y^2=40 x^6+39 x^5+48 x^4+57 x^3+58 x^2+42 x+39$
- $y^2=30 x^6+35 x^5+6 x^4+40 x^3+48 x^2+38 x+27$
- $y^2=60 x^6+53 x^5+4 x^4+4 x^3+26 x^2+37 x+32$
- $y^2=14 x^6+42 x^5+48 x^4+47 x^3+24 x^2+x+42$
- $y^2=13 x^6+57 x^5+15 x^4+9 x^3+21 x^2+22 x+43$
- $y^2=21 x^6+16 x^5+13 x^4+38 x^3+x^2+20 x+21$
- $y^2=53 x^6+33 x^5+43 x^4+46 x^3+54 x^2+34 x+27$
- $y^2=42 x^6+42 x^5+24 x^4+26 x^3+x^2+53 x+50$
- $y^2=21 x^6+31 x^5+29 x^4+43 x^3+7 x^2+60 x+50$
- $y^2=23 x^6+49 x^5+33 x^4+12 x^3+2 x^2+35 x+28$
- $y^2=31 x^6+11 x^5+32 x^4+26 x^3+5 x^2+6 x+60$
- $y^2=57 x^6+47 x^5+45 x^4+23 x^3+15 x^2+58 x+57$
- $y^2=40 x^6+53 x^5+30 x^4+60 x^3+53 x^2+13 x+27$
- $y^2=43 x^6+30 x^5+38 x^4+57 x^3+43 x^2+11 x+13$
- $y^2=12 x^6+45 x^5+14 x^4+46 x^3+54 x^2+15 x+36$
- $y^2=19 x^6+35 x^5+49 x^4+48 x^3+30 x^2+12 x+53$
- $y^2=59 x^5+26 x^4+42 x^3+54 x^2+8 x+32$
- $y^2=49 x^6+45 x^5+56 x^4+31 x^3+30 x^2+33 x+57$
- $y^2=7 x^6+4 x^5+47 x^4+54 x^3+18 x^2+20 x+36$
- and 136 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is 4.0.384000.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.ae_abi | $2$ | (not in LMFDB) |