Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 104 x^{2} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.412444837278$, $\pm0.587555162722$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{2}, \sqrt{-113})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $84$ |
| Isomorphism classes: | 96 |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3826$ | $14638276$ | $51520338274$ | $191613920331024$ | $713342910101154226$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $62$ | $3930$ | $226982$ | $13839094$ | $844596302$ | $51520302186$ | $3142742836022$ | $191707345612894$ | $11694146092834142$ | $713342908539425850$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 84 curves (of which all are hyperelliptic):
- $y^2=38 x^6+26 x^5+4 x^4+23 x^3+12 x^2+2 x+51$
- $y^2=15 x^6+52 x^5+8 x^4+46 x^3+24 x^2+4 x+41$
- $y^2=24 x^6+33 x^5+4 x^4+46 x^3+32 x^2+34 x+2$
- $y^2=48 x^6+5 x^5+8 x^4+31 x^3+3 x^2+7 x+4$
- $y^2=7 x^6+31 x^5+17 x^4+4 x^3+14 x^2+47 x+34$
- $y^2=14 x^6+x^5+34 x^4+8 x^3+28 x^2+33 x+7$
- $y^2=56 x^6+19 x^5+12 x^4+45 x^3+14 x^2+29 x+48$
- $y^2=51 x^6+38 x^5+24 x^4+29 x^3+28 x^2+58 x+35$
- $y^2=26 x^6+29 x^5+6 x^4+29 x^3+20 x^2+36 x+17$
- $y^2=52 x^6+58 x^5+12 x^4+58 x^3+40 x^2+11 x+34$
- $y^2=26 x^6+44 x^5+58 x^4+25 x^3+12 x^2+56 x+57$
- $y^2=52 x^6+27 x^5+55 x^4+50 x^3+24 x^2+51 x+53$
- $y^2=24 x^6+23 x^5+16 x^4+13 x^3+58 x^2+35 x+53$
- $y^2=48 x^6+46 x^5+32 x^4+26 x^3+55 x^2+9 x+45$
- $y^2=14 x^6+30 x^5+39 x^4+45 x^3+20 x^2+8$
- $y^2=28 x^6+60 x^5+17 x^4+29 x^3+40 x^2+16$
- $y^2=19 x^6+57 x^5+24 x^3+21 x^2+51 x+1$
- $y^2=38 x^6+53 x^5+48 x^3+42 x^2+41 x+2$
- $y^2=26 x^6+12 x^5+42 x^4+45 x^3+30 x^2+34 x+16$
- $y^2=52 x^6+24 x^5+23 x^4+29 x^3+60 x^2+7 x+32$
- and 64 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{2}}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-113})\). |
| The base change of $A$ to $\F_{61^{2}}$ is 1.3721.ea 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-113}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.a_aea | $4$ | (not in LMFDB) |
| 2.61.ag_s | $8$ | (not in LMFDB) |
| 2.61.g_s | $8$ | (not in LMFDB) |