Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 38 x^{2} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.199588422083$, $\pm0.800411577917$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{10}, \sqrt{-21})\) |
Galois group: | $C_2^2$ |
Jacobians: | $212$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3684$ | $13571856$ | $51520743684$ | $191873471385600$ | $713342909973831204$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $62$ | $3646$ | $226982$ | $13857838$ | $844596302$ | $51521113006$ | $3142742836022$ | $191707296428638$ | $11694146092834142$ | $713342908284779806$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 212 curves (of which all are hyperelliptic):
- $y^2=39 x^6+48 x^5+49 x^4+39 x^3+22 x^2+20$
- $y^2=17 x^6+35 x^5+37 x^4+17 x^3+44 x^2+40$
- $y^2=8 x^6+12 x^5+4 x^4+43 x^3+32 x^2+38 x+28$
- $y^2=16 x^6+24 x^5+8 x^4+25 x^3+3 x^2+15 x+56$
- $y^2=27 x^6+44 x^5+16 x^4+4 x^3+55 x^2+10 x+23$
- $y^2=31 x^6+6 x^5+44 x^4+23 x^3+49 x^2+60 x+1$
- $y^2=14 x^6+40 x^5+60 x^4+12 x^3+44 x^2+31 x+35$
- $y^2=12 x^6+51 x^5+18 x^4+23 x^3+40 x+10$
- $y^2=24 x^6+41 x^5+36 x^4+46 x^3+19 x+20$
- $y^2=7 x^6+6 x^5+19 x^4+x^3+52 x^2+59 x+51$
- $y^2=14 x^6+12 x^5+38 x^4+2 x^3+43 x^2+57 x+41$
- $y^2=56 x^6+60 x^5+3 x^4+5 x^3+60 x^2+15 x+21$
- $y^2=51 x^6+59 x^5+6 x^4+10 x^3+59 x^2+30 x+42$
- $y^2=21 x^6+60 x^5+29 x^4+38 x^3+5 x^2+46 x+48$
- $y^2=42 x^6+59 x^5+58 x^4+15 x^3+10 x^2+31 x+35$
- $y^2=8 x^6+10 x^5+54 x^4+10 x^3+14 x^2+30 x+6$
- $y^2=23 x^6+22 x^5+52 x^4+45 x^3+58 x^2+17 x+16$
- $y^2=46 x^6+44 x^5+43 x^4+29 x^3+55 x^2+34 x+32$
- $y^2=14 x^6+24 x^5+38 x^4+45 x^3+26 x^2+11 x+27$
- $y^2=28 x^6+48 x^5+15 x^4+29 x^3+52 x^2+22 x+54$
- and 192 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{2}}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{10}, \sqrt{-21})\). |
The base change of $A$ to $\F_{61^{2}}$ is 1.3721.abm 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-210}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.61.a_bm | $4$ | (not in LMFDB) |