Properties

Label 2.59.o_gl
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $( 1 + 7 x + 59 x^{2} )^{2}$
  $1 + 14 x + 167 x^{2} + 826 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.650597135156$, $\pm0.650597135156$
Angle rank:  $1$ (numerical)
Jacobians:  $17$
Cyclic group of points:    no
Non-cyclic primes:   $67$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4489$ $12609601$ $41813706256$ $146883807310969$ $511170313972527049$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $74$ $3620$ $203588$ $12121764$ $714999214$ $42179749526$ $2488652553706$ $146830476384964$ $8662995484126172$ $511116753354284900$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 17 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The isogeny class factors as 1.59.h 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-187}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.ao_gl$2$(not in LMFDB)
2.59.a_cr$2$(not in LMFDB)
2.59.ah_ak$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.ao_gl$2$(not in LMFDB)
2.59.a_cr$2$(not in LMFDB)
2.59.ah_ak$3$(not in LMFDB)
2.59.a_acr$4$(not in LMFDB)
2.59.h_ak$6$(not in LMFDB)