Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 7 x + 59 x^{2} )^{2}$ |
| $1 + 14 x + 167 x^{2} + 826 x^{3} + 3481 x^{4}$ | |
| Frobenius angles: | $\pm0.650597135156$, $\pm0.650597135156$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $17$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $67$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4489$ | $12609601$ | $41813706256$ | $146883807310969$ | $511170313972527049$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $74$ | $3620$ | $203588$ | $12121764$ | $714999214$ | $42179749526$ | $2488652553706$ | $146830476384964$ | $8662995484126172$ | $511116753354284900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 17 curves (of which all are hyperelliptic):
- $y^2=3 x^6+32 x^5+21 x^4+51 x^3+2 x^2+27 x+52$
- $y^2=29 x^6+52 x^5+44 x^4+26 x^3+44 x^2+52 x+29$
- $y^2=2 x^6+58 x^5+31 x^4+9 x^3+5 x^2+50 x+28$
- $y^2=48 x^6+29 x^5+46 x^4+43 x^3+22 x^2+47 x+10$
- $y^2=21 x^6+2 x^5+27 x^4+23 x^3+54 x^2+20 x+54$
- $y^2=17 x^6+11 x^5+40 x^4+29 x^3+40 x^2+11 x+17$
- $y^2=20 x^6+15 x^5+43 x^4+28 x^3+57 x^2+49$
- $y^2=41 x^6+19 x^5+25 x^4+56 x^3+55 x^2+18 x+45$
- $y^2=x^6+10 x^5+35 x^4+37 x^3+2 x^2+34 x+30$
- $y^2=48 x^6+22 x^5+42 x^3+22 x+48$
- $y^2=49 x^6+58 x^5+7 x^4+24 x^3+52 x^2+54 x+18$
- $y^2=8 x^6+6 x^5+10 x^4+39 x^3+5 x^2+19 x+21$
- $y^2=10 x^6+25 x^5+46 x^4+32 x^3+46 x^2+25 x+10$
- $y^2=56 x^6+3 x^5+9 x^4+51 x^3+13 x^2+24 x+51$
- $y^2=4 x^6+11 x^5+55 x^4+36 x^3+55 x^2+11 x+4$
- $y^2=17 x^6+32 x^5+30 x^4+26 x^3+15 x^2+18 x+56$
- $y^2=7 x^6+45 x^5+34 x^4+7 x^3+48 x^2+41 x+43$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The isogeny class factors as 1.59.h 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-187}) \)$)$ |
Base change
This is a primitive isogeny class.