Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 25 x + 269 x^{2} - 1475 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.0870584688725$, $\pm0.268631548773$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1000629.1 |
Galois group: | $D_{4}$ |
Jacobians: | $4$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2251$ | $11820001$ | $42206157709$ | $146873784005869$ | $511127120859737776$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $35$ | $3395$ | $205505$ | $12120939$ | $714938800$ | $42180421151$ | $2488649612995$ | $146830430004739$ | $8662995915787565$ | $511116755403884150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=52 x^6+6 x^5+7 x^4+46 x^3+38 x^2+11 x+55$
- $y^2=50 x^6+31 x^5+35 x^4+36 x^3+5 x^2+51 x+21$
- $y^2=31 x^6+48 x^5+50 x^4+11 x^3+14 x^2+28 x+1$
- $y^2=16 x^6+41 x^5+58 x^4+12 x^3+29 x^2+10 x+7$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is 4.0.1000629.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.z_kj | $2$ | (not in LMFDB) |