Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 25 x + 267 x^{2} - 1475 x^{3} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.0473576671055$, $\pm0.279593066244$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.609725.2 |
| Galois group: | $C_4$ |
| Jacobians: | $4$ |
| Isomorphism classes: | 4 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2249$ | $11805001$ | $42175161899$ | $146839161063725$ | $511100668270704304$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $35$ | $3391$ | $205355$ | $12118083$ | $714901800$ | $42180058531$ | $2488646765045$ | $146830410767283$ | $8662995785442665$ | $511116754328017206$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=50 x^6+10 x^5+38 x^4+43 x^3+14 x^2+44 x+18$
- $y^2=36 x^6+43 x^5+15 x^4+35 x^3+14 x^2+53 x+18$
- $y^2=34 x^6+58 x^5+27 x^4+45 x^3+50 x^2+17 x+39$
- $y^2=47 x^6+6 x^5+32 x^4+11 x^3+39 x^2+26 x+4$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is 4.0.609725.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.z_kh | $2$ | (not in LMFDB) |