Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 23 x + 247 x^{2} - 1357 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.166722977967$, $\pm0.282548125847$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.4901.1 |
Galois group: | $D_{4}$ |
Jacobians: | $17$ |
Isomorphism classes: | 17 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2349$ | $12001041$ | $42346275687$ | $146950118817021$ | $511160231377803024$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $37$ | $3447$ | $206185$ | $12127235$ | $714985112$ | $42180707907$ | $2488651067807$ | $146830433123539$ | $8662995843390175$ | $511116753803802102$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 17 curves (of which all are hyperelliptic):
- $y^2=39 x^6+54 x^5+9 x^4+22 x^3+42 x^2+20 x+39$
- $y^2=13 x^6+53 x^5+22 x^4+43 x^3+10 x^2+25 x+12$
- $y^2=25 x^6+41 x^5+53 x^4+35 x^3+54 x^2+43 x+15$
- $y^2=11 x^6+6 x^5+37 x^4+44 x^3+39 x^2+51 x+2$
- $y^2=19 x^6+41 x^5+18 x^4+18 x^3+34 x^2+46 x+31$
- $y^2=24 x^6+37 x^5+41 x^4+31 x^3+35 x^2+7 x+33$
- $y^2=39 x^6+51 x^5+2 x^4+36 x^3+30 x^2+13 x+40$
- $y^2=57 x^6+9 x^5+26 x^4+22 x^3+53 x^2+50 x+2$
- $y^2=19 x^6+44 x^5+54 x^4+35 x^3+21 x^2+22 x+41$
- $y^2=2 x^6+14 x^5+8 x^4+45 x^3+39 x^2+9 x+14$
- $y^2=8 x^6+8 x^5+42 x^4+2 x^3+14 x^2+52 x+32$
- $y^2=37 x^6+7 x^5+39 x^4+33 x^3+32 x^2+41 x+20$
- $y^2=2 x^6+44 x^5+17 x^4+26 x^3+40 x^2+8 x+34$
- $y^2=44 x^6+19 x^5+52 x^4+23 x^3+40 x^2+46 x+13$
- $y^2=8 x^6+36 x^5+27 x^4+4 x^3+44 x^2+5 x+33$
- $y^2=43 x^6+30 x^5+43 x^4+45 x^2+51 x+56$
- $y^2=38 x^6+42 x^5+18 x^4+51 x^3+33 x^2+26 x+13$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is 4.0.4901.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.x_jn | $2$ | (not in LMFDB) |