Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 14 x + 59 x^{2} )( 1 - 9 x + 59 x^{2} )$ |
$1 - 23 x + 244 x^{2} - 1357 x^{3} + 3481 x^{4}$ | |
Frobenius angles: | $\pm0.135062563049$, $\pm0.300760731311$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $20$ |
Isomorphism classes: | 104 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2346$ | $11978676$ | $42303531816$ | $146908878199200$ | $511136305747439046$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $37$ | $3441$ | $205978$ | $12123833$ | $714951647$ | $42180537906$ | $2488651609733$ | $146830454021233$ | $8662996076356462$ | $511116755376714081$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=38 x^6+54 x^5+31 x^4+29 x^3+51 x^2+21 x+34$
- $y^2=21 x^6+13 x^5+24 x^4+15 x^3+11 x^2+20 x+16$
- $y^2=48 x^6+13 x^4+40 x^3+58 x^2+47 x+2$
- $y^2=5 x^6+57 x^5+7 x^4+31 x^3+33 x^2+34 x+28$
- $y^2=20 x^6+56 x^5+41 x^4+16 x^3+33 x^2+54 x+29$
- $y^2=14 x^6+32 x^5+46 x^4+12 x^3+8 x^2+23 x+30$
- $y^2=10 x^6+x^5+23 x^4+27 x^3+58 x^2+38 x+29$
- $y^2=54 x^6+9 x^5+41 x^4+43 x^3+9 x^2+15 x+28$
- $y^2=56 x^6+30 x^5+17 x^4+15 x^3+16 x^2+7 x+43$
- $y^2=14 x^6+31 x^5+49 x^4+55 x^3+29 x^2+17 x+20$
- $y^2=34 x^6+42 x^5+41 x^4+5 x^3+23 x^2+32 x+54$
- $y^2=10 x^6+14 x^5+31 x^4+52 x^3+39 x^2+39 x+6$
- $y^2=2 x^6+52 x^5+42 x^4+14 x^2+33 x+10$
- $y^2=37 x^6+5 x^4+9 x^3+40 x^2+4 x+37$
- $y^2=47 x^6+26 x^5+6 x^4+17 x^3+40 x^2+56 x+19$
- $y^2=51 x^6+47 x^5+31 x^4+7 x^3+43 x^2+9 x+56$
- $y^2=23 x^6+10 x^5+40 x^4+37 x^3+5 x^2+13 x+55$
- $y^2=44 x^6+43 x^5+53 x^4+26 x^3+21 x^2+11 x+39$
- $y^2=2 x^6+45 x^5+4 x^4+35 x^3+2 x^2+28 x+22$
- $y^2=31 x^6+31 x^5+34 x^4+11 x^3+56 x^2+38 x+36$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The isogeny class factors as 1.59.ao $\times$ 1.59.aj and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.af_ai | $2$ | (not in LMFDB) |
2.59.f_ai | $2$ | (not in LMFDB) |
2.59.x_jk | $2$ | (not in LMFDB) |