Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 8 x + 89 x^{2} - 472 x^{3} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.254497897318$, $\pm0.556409345449$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.693625.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $192$ |
| Isomorphism classes: | 192 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3091$ | $12521641$ | $42223356736$ | $146850612629545$ | $511171427873398171$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $52$ | $3596$ | $205588$ | $12119028$ | $715000772$ | $42180698486$ | $2488646059868$ | $146830409829028$ | $8662995890880652$ | $511116753216048956$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 192 curves (of which all are hyperelliptic):
- $y^2=54 x^6+38 x^5+24 x^4+44 x^3+19 x^2+20$
- $y^2=10 x^6+9 x^5+14 x^4+16 x^3+22 x^2+6 x+46$
- $y^2=42 x^6+6 x^5+36 x^4+23 x^3+35 x^2+15 x+58$
- $y^2=51 x^6+58 x^5+50 x^4+39 x^3+47 x^2+23 x+41$
- $y^2=39 x^6+50 x^5+40 x^4+15 x^3+48 x^2+22 x+53$
- $y^2=26 x^6+11 x^5+8 x^4+2 x^3+18 x^2+57 x+48$
- $y^2=10 x^6+31 x^5+32 x^4+37 x^3+22 x^2+50 x+1$
- $y^2=x^6+22 x^5+35 x^4+24 x^3+14 x^2+33 x+44$
- $y^2=19 x^6+17 x^5+33 x^4+24 x^3+56 x^2+3 x+47$
- $y^2=57 x^6+53 x^5+21 x^4+19 x^3+58 x^2+x+47$
- $y^2=35 x^6+53 x^5+38 x^4+54 x^3+22 x^2+10 x+2$
- $y^2=34 x^6+3 x^5+25 x^4+24 x^3+34 x^2+7 x+4$
- $y^2=58 x^6+31 x^5+20 x^4+30 x^3+24 x^2+18 x+23$
- $y^2=37 x^6+4 x^5+18 x^4+24 x^3+3 x^2+9 x+36$
- $y^2=31 x^6+10 x^5+15 x^4+33 x^3+45 x^2+32$
- $y^2=29 x^6+12 x^5+37 x^4+52 x^3+18 x^2+41 x+28$
- $y^2=31 x^6+2 x^5+13 x^4+27 x^3+3 x^2+27 x+29$
- $y^2=3 x^6+10 x^5+22 x^4+35 x^2+49 x+40$
- $y^2=54 x^6+21 x^5+39 x^4+24 x^3+52 x^2+36 x+6$
- $y^2=33 x^6+45 x^5+51 x^4+7 x^3+46 x^2+27 x+51$
- and 172 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is 4.0.693625.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.i_dl | $2$ | (not in LMFDB) |