Invariants
| Base field: | $\F_{59}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 - 27 x + 299 x^{2} - 1593 x^{3} + 3481 x^{4}$ | 
| Frobenius angles: | $\pm0.0994873533663$, $\pm0.201629535657$ | 
| Angle rank: | $2$ (numerical) | 
| Number field: | 4.0.46125.1 | 
| Galois group: | $D_{4}$ | 
| Jacobians: | $4$ | 
| Isomorphism classes: | 4 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2161$ | $11671561$ | $42130879771$ | $146873114532045$ | $511154665713250096$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $33$ | $3351$ | $205137$ | $12120883$ | $714977328$ | $42180981531$ | $2488654177287$ | $146830448599123$ | $8662995839363643$ | $511116753302329206$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=39 x^6+26 x^5+39 x^4+14 x^3+51 x^2+24 x+31$
- $y^2=54 x^6+35 x^5+54 x^4+6 x^3+30 x^2+2 x+6$
- $y^2=31 x^6+8 x^5+20 x^4+20 x^3+21 x^2+31 x+55$
- $y^2=14 x^6+17 x^5+58 x^4+7 x^3+24 x^2+10 x+8$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is 4.0.46125.1. | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.59.bb_ln | $2$ | (not in LMFDB) | 
