Invariants
| Base field: | $\F_{59}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $( 1 - 14 x + 59 x^{2} )( 1 - 12 x + 59 x^{2} )$ | 
| $1 - 26 x + 286 x^{2} - 1534 x^{3} + 3481 x^{4}$ | |
| Frobenius angles: | $\pm0.135062563049$, $\pm0.214641822575$ | 
| Angle rank: | $2$ (numerical) | 
| Jacobians: | $12$ | 
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2208$ | $11764224$ | $42207538464$ | $146917276139520$ | $511173988737577248$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $34$ | $3378$ | $205510$ | $12124526$ | $715004354$ | $42181127586$ | $2488654568966$ | $146830445789086$ | $8662995781835170$ | $511116752666045778$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=37 x^6+45 x^5+45 x^3+45 x+37$
- $y^2=14 x^6+42 x^5+40 x^4+49 x^3+38 x^2+50 x+6$
- $y^2=33 x^6+6 x^5+52 x^4+56 x^3+47 x^2+8 x+8$
- $y^2=20 x^6+24 x^5+16 x^4+9 x^3+16 x^2+24 x+20$
- $y^2=58 x^6+35 x^5+34 x^4+23 x^3+34 x^2+35 x+58$
- $y^2=8 x^6+x^5+17 x^3+x+8$
- $y^2=13 x^6+49 x^5+30 x^4+57 x^3+30 x^2+49 x+13$
- $y^2=3 x^6+31 x^5+52 x^4+45 x^3+6 x^2+30 x+16$
- $y^2=48 x^6+2 x^5+27 x^4+42 x^3+36 x^2+56 x+22$
- $y^2=53 x^6+3 x^5+20 x^4+35 x^3+20 x^2+3 x+53$
- $y^2=57 x^6+22 x^5+5 x^4+41 x^3+46 x^2+26 x+4$
- $y^2=47 x^6+22 x^5+30 x^3+22 x+47$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The isogeny class factors as 1.59.ao $\times$ 1.59.am and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.59.ac_aby | $2$ | (not in LMFDB) | 
| 2.59.c_aby | $2$ | (not in LMFDB) | 
| 2.59.ba_la | $2$ | (not in LMFDB) | 
