Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 26 x + 285 x^{2} - 1534 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.112413476671$, $\pm0.228039227441$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.183872.5 |
Galois group: | $D_{4}$ |
Jacobians: | $4$ |
Isomorphism classes: | 4 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2207$ | $11756689$ | $42191404388$ | $146898335955497$ | $511158745595533447$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $34$ | $3376$ | $205432$ | $12122964$ | $714983034$ | $42180912910$ | $2488653019054$ | $146830440000420$ | $8662995821040856$ | $511116753713070336$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=5 x^6+4 x^5+58 x^4+35 x^3+43 x^2+10 x+4$
- $y^2=6 x^6+50 x^5+2 x^4+7 x^3+26 x^2+55 x+11$
- $y^2=8 x^6+36 x^5+30 x^4+4 x^3+24 x^2+16 x+47$
- $y^2=48 x^6+34 x^5+35 x^4+17 x^3+8 x^2+46 x+56$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is 4.0.183872.5. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.ba_kz | $2$ | (not in LMFDB) |