Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 38 x^{2} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.197816746899$, $\pm0.802183253101$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-5}, \sqrt{39})\) |
Galois group: | $C_2^2$ |
Jacobians: | $332$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3444$ | $11861136$ | $42180875604$ | $146964219494400$ | $511116751874154804$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $3406$ | $205380$ | $12128398$ | $714924300$ | $42181217566$ | $2488651484820$ | $146830425177118$ | $8662995818654940$ | $511116750447668206$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 332 curves (of which all are hyperelliptic):
- $y^2=55 x^6+38 x^5+18 x^4+41 x^3+18 x^2+5 x+52$
- $y^2=51 x^6+17 x^5+36 x^4+23 x^3+36 x^2+10 x+45$
- $y^2=41 x^6+18 x^5+34 x^4+50 x^3+35 x^2+40 x+56$
- $y^2=23 x^6+55 x^5+42 x^4+51 x^3+54 x^2+30 x+27$
- $y^2=46 x^6+51 x^5+25 x^4+43 x^3+49 x^2+x+54$
- $y^2=54 x^6+40 x^5+13 x^4+9 x^3+19 x^2+24 x+41$
- $y^2=38 x^6+10 x^5+57 x^3+4 x^2+28 x+7$
- $y^2=2 x^6+22 x^5+43 x^4+27 x^3+36 x^2+21 x+1$
- $y^2=4 x^6+44 x^5+27 x^4+54 x^3+13 x^2+42 x+2$
- $y^2=43 x^6+58 x^5+19 x^4+47 x^3+35 x^2+3 x+41$
- $y^2=27 x^6+57 x^5+38 x^4+35 x^3+11 x^2+6 x+23$
- $y^2=58 x^6+13 x^5+39 x^4+50 x^3+x^2+58 x+27$
- $y^2=14 x^6+13 x^5+28 x^4+56 x^3+16 x^2+x+24$
- $y^2=8 x^6+48 x^5+40 x^4+46 x^3+5 x^2+45 x+12$
- $y^2=56 x^6+52 x^5+36 x^4+18 x^3+54 x^2+56 x+51$
- $y^2=53 x^6+45 x^5+13 x^4+36 x^3+49 x^2+53 x+43$
- $y^2=30 x^6+22 x^5+39 x^4+19 x^3+17 x^2+42 x+35$
- $y^2=36 x^6+54 x^5+37 x^3+34 x^2+32 x+5$
- $y^2=33 x^6+9 x^5+58 x^4+19 x^3+33 x^2+52 x+50$
- $y^2=7 x^6+18 x^5+57 x^4+38 x^3+7 x^2+45 x+41$
- and 312 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-5}, \sqrt{39})\). |
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.abm 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-195}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.a_bm | $4$ | (not in LMFDB) |