Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 16 x + 162 x^{2} + 848 x^{3} + 2809 x^{4}$ |
| Frobenius angles: | $\pm0.615582156295$, $\pm0.766930616479$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.70208.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $66$ |
| Isomorphism classes: | 84 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3836$ | $8086288$ | $21995842652$ | $62297797796864$ | $174889216177441276$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $70$ | $2878$ | $147742$ | $7895310$ | $418199670$ | $22164284494$ | $1174710786382$ | $62259691378590$ | $3299763686843302$ | $174887469203164638$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 66 curves (of which all are hyperelliptic):
- $y^2=46 x^6+44 x^5+28 x^4+14 x^3+31 x^2+11 x+27$
- $y^2=13 x^6+13 x^5+4 x^4+2 x^3+49 x^2+19 x+17$
- $y^2=40 x^6+42 x^5+34 x^4+3 x^3+24 x^2+19 x+34$
- $y^2=3 x^6+17 x^5+36 x^4+11 x^3+48 x^2+43 x+25$
- $y^2=15 x^6+24 x^5+32 x^4+39 x^3+51 x^2+52 x+36$
- $y^2=52 x^6+25 x^5+45 x^4+41 x^3+40 x^2+14 x+2$
- $y^2=x^6+4 x^5+3 x^4+47 x^3+22 x^2+47 x+6$
- $y^2=40 x^6+19 x^5+15 x^4+4 x^3+42 x^2+26 x+7$
- $y^2=44 x^6+23 x^5+28 x^4+21 x^3+36 x^2+29 x+32$
- $y^2=15 x^6+18 x^5+48 x^4+13 x^3+15 x^2+42 x+11$
- $y^2=23 x^6+33 x^5+6 x^4+19 x^3+31 x^2+46 x+39$
- $y^2=13 x^6+38 x^5+15 x^4+9 x^3+14 x^2+10 x+1$
- $y^2=10 x^6+19 x^4+9 x^3+40 x^2+47$
- $y^2=13 x^6+52 x^5+30 x^4+7 x^3+35 x^2+37 x+32$
- $y^2=6 x^6+47 x^5+44 x^4+37 x^3+37 x^2+3 x+11$
- $y^2=16 x^6+13 x^5+23 x^4+17 x^3+41 x^2+43 x+47$
- $y^2=25 x^6+18 x^5+13 x^4+9 x^2+35 x$
- $y^2=47 x^6+14 x^5+35 x^4+44 x^3+13 x^2+18 x+35$
- $y^2=22 x^6+37 x^5+50 x^4+25 x^3+40 x^2+47 x+40$
- $y^2=3 x^6+9 x^5+14 x^4+45 x^3+43 x^2+16 x+39$
- and 46 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is 4.0.70208.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.aq_gg | $2$ | (not in LMFDB) |