Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - x + 53 x^{2} )( 1 + 13 x + 53 x^{2} )$ |
| $1 + 12 x + 93 x^{2} + 636 x^{3} + 2809 x^{4}$ | |
| Frobenius angles: | $\pm0.478121163875$, $\pm0.851293248891$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $57$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3551$ | $8007505$ | $22207556288$ | $62230044844825$ | $174869862216417071$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $66$ | $2852$ | $149166$ | $7886724$ | $418153386$ | $22164914774$ | $1174709993250$ | $62259690018436$ | $3299763469313718$ | $174887471045960132$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 57 curves (of which all are hyperelliptic):
- $y^2=17 x^6+39 x^5+8 x^4+12 x^3+13 x^2+45 x+30$
- $y^2=36 x^6+21 x^5+14 x^4+26 x^3+4 x^2+3 x+9$
- $y^2=x^6+4 x^4+3 x^3+5 x+44$
- $y^2=13 x^6+18 x^5+25 x^4+46 x^3+40 x^2+11 x+24$
- $y^2=40 x^6+11 x^5+4 x^4+45 x^3+49 x^2+46 x+8$
- $y^2=44 x^6+45 x^5+21 x^4+14 x^3+31 x^2+45 x+13$
- $y^2=49 x^6+11 x^5+5 x^4+2 x^3+28 x^2+21 x+29$
- $y^2=50 x^6+7 x^5+37 x^4+20 x^3+29 x^2+39 x+43$
- $y^2=38 x^6+30 x^5+22 x^4+42 x^3+9 x^2+32 x+14$
- $y^2=x^6+37 x^5+8 x^4+29 x^3+43 x^2+18 x+36$
- $y^2=9 x^6+15 x^5+21 x^4+38 x^3+31 x^2+x+34$
- $y^2=52 x^6+13 x^5+17 x^4+38 x^3+17 x^2+13 x+52$
- $y^2=26 x^6+48 x^5+37 x^4+36 x^3+14 x^2+37 x+46$
- $y^2=51 x^6+29 x^5+4 x^4+38 x^3+42 x^2+17 x+46$
- $y^2=25 x^6+25 x^5+32 x^4+17 x^3+32 x^2+25 x+25$
- $y^2=23 x^6+38 x^5+24 x^4+6 x^3+27 x^2+45 x+5$
- $y^2=42 x^6+27 x^5+25 x^4+10 x^3+15 x^2+52 x+31$
- $y^2=24 x^6+4 x^5+39 x^4+38 x^3+39 x^2+4 x+24$
- $y^2=9 x^6+7 x^5+46 x^4+47 x^3+46 x^2+7 x+9$
- $y^2=6 x^6+35 x^5+10 x^4+51 x^3+44 x^2+35 x+20$
- and 37 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The isogeny class factors as 1.53.ab $\times$ 1.53.n and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.ao_ep | $2$ | (not in LMFDB) |
| 2.53.am_dp | $2$ | (not in LMFDB) |
| 2.53.o_ep | $2$ | (not in LMFDB) |