Properties

Label 2.53.az_jz
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $1 - 25 x + 259 x^{2} - 1325 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.0599466142417$, $\pm0.237328379738$
Angle rank:  $2$ (numerical)
Number field:  4.0.122525.3
Galois group:  $D_{4}$
Jacobians:  $4$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1719$ $7596261$ $22138294491$ $62271116769861$ $174891652336898064$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $29$ $2703$ $148703$ $7891931$ $418205494$ $22164304527$ $1174709546263$ $62259674411923$ $3299763501463109$ $174887470298403078$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53}$.

Endomorphism algebra over $\F_{53}$
The endomorphism algebra of this simple isogeny class is 4.0.122525.3.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.z_jz$2$(not in LMFDB)