Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 25 x + 259 x^{2} - 1325 x^{3} + 2809 x^{4}$ |
| Frobenius angles: | $\pm0.0599466142417$, $\pm0.237328379738$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.122525.3 |
| Galois group: | $D_{4}$ |
| Jacobians: | $4$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1719$ | $7596261$ | $22138294491$ | $62271116769861$ | $174891652336898064$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $29$ | $2703$ | $148703$ | $7891931$ | $418205494$ | $22164304527$ | $1174709546263$ | $62259674411923$ | $3299763501463109$ | $174887470298403078$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=32 x^6+29 x^5+28 x^4+20 x^3+26 x^2+17 x+14$
- $y^2=2 x^6+11 x^5+36 x^4+15 x^3+14 x^2+27 x+5$
- $y^2=14 x^6+48 x^5+20 x^4+38 x^3+29 x^2+44 x+35$
- $y^2=10 x^6+22 x^5+40 x^4+44 x^3+14 x^2+3 x+52$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is 4.0.122525.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.z_jz | $2$ | (not in LMFDB) |