Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 23 x + 230 x^{2} - 1219 x^{3} + 2809 x^{4}$ |
| Frobenius angles: | $\pm0.0511985002933$, $\pm0.298119617729$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.814572.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $4$ |
| Isomorphism classes: | 4 |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1798$ | $7699036$ | $22171008544$ | $62260687509376$ | $174876111723431998$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $31$ | $2741$ | $148924$ | $7890609$ | $418168331$ | $22163957066$ | $1174708119455$ | $62259680408833$ | $3299763640178908$ | $174887471231929421$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=9 x^6+19 x^5+31 x^4+4 x^3+12 x^2+30 x+36$
- $y^2=22 x^6+32 x^5+31 x^4+17 x^3+47 x^2+25 x+45$
- $y^2=51 x^6+31 x^5+49 x^4+38 x^3+34 x^2+47 x+18$
- $y^2=11 x^6+42 x^5+31 x^4+43 x^3+21 x^2+26 x+50$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is 4.0.814572.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.x_iw | $2$ | (not in LMFDB) |