Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 23 x + 229 x^{2} - 1219 x^{3} + 2809 x^{4}$ |
| Frobenius angles: | $\pm0.0161938946932$, $\pm0.302684961462$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.105413.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $2$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1797$ | $7692957$ | $22160670489$ | $62251231105989$ | $174870196450697472$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $31$ | $2739$ | $148855$ | $7889411$ | $418154186$ | $22163827707$ | $1174707089699$ | $62259672066019$ | $3299763563132611$ | $174887470468463334$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):
- $y^2=14 x^6+6 x^5+2 x^4+7 x^3+31 x^2+50 x+11$
- $y^2=12 x^6+9 x^5+35 x^4+24 x^3+23 x^2+17 x+27$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is 4.0.105413.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.x_iv | $2$ | (not in LMFDB) |