Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 13 x + 53 x^{2} )( 1 - 8 x + 53 x^{2} )$ |
| $1 - 21 x + 210 x^{2} - 1113 x^{3} + 2809 x^{4}$ | |
| Frobenius angles: | $\pm0.148706751109$, $\pm0.314840234458$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $6$ |
| Isomorphism classes: | 26 |
| Cyclic group of points: | yes |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1886$ | $7834444$ | $22258353224$ | $62303133870016$ | $174895366047001766$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $33$ | $2789$ | $149508$ | $7895985$ | $418214373$ | $22164362138$ | $1174711551585$ | $62259704400769$ | $3299763747203604$ | $174887471146611389$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which all are hyperelliptic):
- $y^2=2 x^6+21 x^5+x^4+5 x^3+27 x^2+12 x+33$
- $y^2=29 x^6+19 x^5+45 x^4+30 x^3+19 x^2+20 x+29$
- $y^2=39 x^6+x^5+30 x^4+31 x^3+15 x^2+32 x+33$
- $y^2=3 x^6+2 x^5+48 x^4+38 x^3+24 x^2+3 x+34$
- $y^2=26 x^6+31 x^5+33 x^4+41 x^3+47 x^2+17 x+20$
- $y^2=48 x^6+40 x^5+15 x^4+23 x^3+12 x^2+11 x+7$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The isogeny class factors as 1.53.an $\times$ 1.53.ai and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.af_c | $2$ | (not in LMFDB) |
| 2.53.f_c | $2$ | (not in LMFDB) |
| 2.53.v_ic | $2$ | (not in LMFDB) |