Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 14 x + 98 x^{2} - 742 x^{3} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.0120231262017$, $\pm0.512023126202$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{57})\) |
Galois group: | $C_2^2$ |
Jacobians: | $8$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2152$ | $7884928$ | $22037583976$ | $62172089565184$ | $174873882049061032$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $40$ | $2810$ | $148024$ | $7879374$ | $418163000$ | $22164361130$ | $1174708481000$ | $62259660279454$ | $3299763521797192$ | $174887470365513050$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):
- $y^2=9 x^6+41 x^5+23 x^4+24 x^3+11 x^2+23 x+6$
- $y^2=34 x^6+18 x^5+44 x^4+20 x^3+40 x^2+51 x+32$
- $y^2=9 x^6+4 x^5+16 x^4+16 x^2+49 x+9$
- $y^2=35 x^6+48 x^5+9 x^4+4 x^3+22 x^2+49 x+14$
- $y^2=46 x^6+19 x^5+28 x^4+38 x^3+8 x^2+3 x+31$
- $y^2=18 x^6+34 x^5+24 x^4+24 x^2+19 x+18$
- $y^2=15 x^6+36 x^5+33 x^4+23 x^3+38 x^2+25 x+32$
- $y^2=49 x^6+6 x^5+4 x^4+26 x^3+36 x^2+16 x+3$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{4}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{57})\). |
The base change of $A$ to $\F_{53^{4}}$ is 1.7890481.aifq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-57}) \)$)$ |
- Endomorphism algebra over $\F_{53^{2}}$
The base change of $A$ to $\F_{53^{2}}$ is the simple isogeny class 2.2809.a_aifq and its endomorphism algebra is \(\Q(i, \sqrt{57})\).
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.o_du | $2$ | (not in LMFDB) |
2.53.a_ai | $8$ | (not in LMFDB) |
2.53.a_i | $8$ | (not in LMFDB) |