Properties

Label 2.53.ao_du
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $1 - 14 x + 98 x^{2} - 742 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.0120231262017$, $\pm0.512023126202$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(i, \sqrt{57})\)
Galois group:  $C_2^2$
Jacobians:  $8$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2152$ $7884928$ $22037583976$ $62172089565184$ $174873882049061032$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $40$ $2810$ $148024$ $7879374$ $418163000$ $22164361130$ $1174708481000$ $62259660279454$ $3299763521797192$ $174887470365513050$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53^{4}}$.

Endomorphism algebra over $\F_{53}$
The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{57})\).
Endomorphism algebra over $\overline{\F}_{53}$
The base change of $A$ to $\F_{53^{4}}$ is 1.7890481.aifq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-57}) \)$)$
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.o_du$2$(not in LMFDB)
2.53.a_ai$8$(not in LMFDB)
2.53.a_i$8$(not in LMFDB)