Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 10 x + 53 x^{2} )( 1 + 5 x + 53 x^{2} )$ |
| $1 - 5 x + 56 x^{2} - 265 x^{3} + 2809 x^{4}$ | |
| Frobenius angles: | $\pm0.259013587977$, $\pm0.611579124397$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $136$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2596$ | $8141056$ | $22152353344$ | $62296304874496$ | $174914560802551636$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $49$ | $2897$ | $148798$ | $7895121$ | $418260269$ | $22164159638$ | $1174707959033$ | $62259689925313$ | $3299763532148614$ | $174887469817541897$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 136 curves (of which all are hyperelliptic):
- $y^2=32 x^6+32 x^5+6 x^4+45 x^3+48 x^2+28 x+5$
- $y^2=29 x^6+29 x^5+50 x^4+48 x^3+16 x^2+51 x+36$
- $y^2=13 x^6+2 x^5+44 x^4+14 x^3+13 x^2+8 x+40$
- $y^2=31 x^6+9 x^5+26 x^4+22 x^3+52 x^2+49 x+24$
- $y^2=22 x^6+13 x^5+50 x^4+29 x^3+3 x^2+25 x+3$
- $y^2=2 x^5+33 x^4+14 x^3+41 x^2+10 x+13$
- $y^2=43 x^6+50 x^5+52 x^4+50 x^3+35 x^2+40 x+47$
- $y^2=33 x^6+23 x^5+29 x^4+8 x^3+18 x^2+45 x+48$
- $y^2=2 x^6+49 x^5+52 x^4+21 x^3+42 x^2+32 x+31$
- $y^2=51 x^6+11 x^5+22 x^4+8 x^3+23 x^2+7 x+39$
- $y^2=45 x^6+49 x^5+37 x^4+16 x^3+35 x^2+47 x+12$
- $y^2=5 x^6+26 x^5+5 x^4+8 x^3+11 x^2+22 x+40$
- $y^2=31 x^6+21 x^5+42 x^4+15 x^3+45 x^2+48 x+19$
- $y^2=16 x^6+2 x^5+18 x^4+51 x^3+38 x^2+47 x+29$
- $y^2=8 x^6+50 x^5+9 x^4+52 x^3+22 x^2+15 x+30$
- $y^2=51 x^6+12 x^5+24 x^4+23 x^3+7 x^2+25 x+26$
- $y^2=7 x^6+2 x^4+24 x^3+52 x^2+52 x+40$
- $y^2=52 x^6+17 x^5+51 x^4+7 x^3+8 x^2+11 x+50$
- $y^2=9 x^6+42 x^5+32 x^4+44 x^3+49 x^2+33 x+28$
- $y^2=35 x^6+25 x^5+37 x^4+27 x^3+26 x+23$
- and 116 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The isogeny class factors as 1.53.ak $\times$ 1.53.f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.ap_ga | $2$ | (not in LMFDB) |
| 2.53.f_ce | $2$ | (not in LMFDB) |
| 2.53.p_ga | $2$ | (not in LMFDB) |