Properties

Label 2.5.f_q
Base field $\F_{5}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5}$
Dimension:  $2$
L-polynomial:  $( 1 + 2 x + 5 x^{2} )( 1 + 3 x + 5 x^{2} )$
  $1 + 5 x + 16 x^{2} + 25 x^{3} + 25 x^{4}$
Frobenius angles:  $\pm0.647583617650$, $\pm0.734057859785$
Angle rank:  $2$ (numerical)
Jacobians:  $0$
Isomorphism classes:  2

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $72$ $864$ $11232$ $432000$ $9845352$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $11$ $33$ $86$ $689$ $3151$ $15318$ $78691$ $390529$ $1951646$ $9768153$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5}$.

Endomorphism algebra over $\F_{5}$
The isogeny class factors as 1.5.c $\times$ 1.5.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.5.af_q$2$2.25.h_ce
2.5.ab_e$2$2.25.h_ce
2.5.b_e$2$2.25.h_ce

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.5.af_q$2$2.25.h_ce
2.5.ab_e$2$2.25.h_ce
2.5.b_e$2$2.25.h_ce
2.5.ah_w$4$2.625.cl_cwm
2.5.ab_ac$4$2.625.cl_cwm
2.5.b_ac$4$2.625.cl_cwm
2.5.h_w$4$2.625.cl_cwm