Properties

Label 2.5.af_q
Base Field $\F_{5}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{5}$
Dimension:  $2$
L-polynomial:  $( 1 - 3 x + 5 x^{2} )( 1 - 2 x + 5 x^{2} )$
Frobenius angles:  $\pm0.265942140215$, $\pm0.352416382350$
Angle rank:  $2$ (numerical)
Jacobians:  0

This isogeny class is not simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 12 864 21312 432000 9689052 239376384 6059560092 152549568000 3817589596992 95392127486304

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 1 33 166 689 3101 15318 77561 390529 1954606 9768153

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{5}$
The isogeny class factors as 1.5.ad $\times$ 1.5.ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
All geometric endomorphisms are defined over $\F_{5}$.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
2.5.ab_e$2$2.25.h_ce
2.5.b_e$2$2.25.h_ce
2.5.f_q$2$2.25.h_ce
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.5.ab_e$2$2.25.h_ce
2.5.b_e$2$2.25.h_ce
2.5.f_q$2$2.25.h_ce
2.5.ah_w$4$2.625.cl_cwm
2.5.ab_ac$4$2.625.cl_cwm
2.5.b_ac$4$2.625.cl_cwm
2.5.h_w$4$2.625.cl_cwm