Properties

Label 2.5.ac_i
Base Field $\F_{5}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{5}$
Dimension:  $2$
L-polynomial:  $1 - 2 x + 8 x^{2} - 10 x^{3} + 25 x^{4}$
Frobenius angles:  $\pm0.290805673663$, $\pm0.552340175673$
Angle rank:  $2$ (numerical)
Number field:  4.0.35136.1
Galois group:  $D_{4}$
Jacobians:  2

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 22 1012 16918 392656 10079542 243585364 6020673142 152212313088 3822106320934 95421471864532

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 4 38 136 630 3224 15590 77060 389662 1956916 9771158

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{5}$
The endomorphism algebra of this simple isogeny class is 4.0.35136.1.
All geometric endomorphisms are defined over $\F_{5}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.5.c_i$2$2.25.m_cw