Invariants
This isogeny class is simple and geometrically simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
| $A(\F_{q^r})$ |
$2908$ |
$5106448$ |
$10678737244$ |
$23818761160704$ |
$52603098234210268$ |
Point counts of the curve
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
| $C(\F_{q^r})$ |
$60$ |
$2310$ |
$102852$ |
$4881214$ |
$229362300$ |
$10779148230$ |
$506623099140$ |
$23811281966974$ |
$1119130531688124$ |
$52599132265820550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 84 curves (of which all are hyperelliptic):
- $y^2=32 x^6+18 x^5+15 x^4+17 x^3+31 x^2+2 x+8$
- $y^2=8 x^6+31 x^5+37 x^4+7 x^3+31 x^2+12 x+17$
- $y^2=9 x^6+45 x^5+34 x^4+8 x^3+25 x^2+44 x+44$
- $y^2=7 x^6+42 x^5+4 x^4+40 x^3+7 x^2+15 x$
- $y^2=42 x^6+19 x^5+19 x^4+28 x^3+32 x^2+46 x+22$
- $y^2=x^6+22 x^5+32 x^4+13 x^3+18 x^2+44 x+25$
- $y^2=43 x^6+26 x^4+3 x^3+22 x^2+14 x+44$
- $y^2=39 x^6+29 x^5+34 x^4+6 x^3+14 x^2+43 x+3$
- $y^2=37 x^6+9 x^5+9 x^4+44 x^3+40 x^2+45 x+40$
- $y^2=30 x^6+31 x^5+7 x^4+14 x^3+40 x^2+37 x+27$
- $y^2=10 x^6+16 x^5+25 x^4+42 x^3+27 x^2+4 x+38$
- $y^2=x^6+35 x^5+44 x^4+44 x^3+29 x^2+25 x+8$
- $y^2=34 x^6+8 x^5+32 x^4+29 x^3+3 x^2+46 x+42$
- $y^2=4 x^6+40 x^5+29 x^4+44 x^3+25 x^2+28 x+4$
- $y^2=14 x^6+15 x^5+40 x^4+44 x^3+45 x^2+4 x+33$
- $y^2=28 x^6+18 x^5+20 x^4+15 x^3+9 x^2+13 x+17$
- $y^2=46 x^6+34 x^5+2 x^4+43 x^3+12 x^2+36 x+33$
- $y^2=32 x^6+32 x^5+17 x^4+37 x^3+22 x^2+16 x+21$
- $y^2=8 x^6+6 x^5+39 x^4+35 x^3+25 x^2+31 x+1$
- $y^2=7 x^5+34 x^4+16 x^3+13 x^2+2 x+28$
- and 64 more
- $y^2=12 x^6+2 x^5+16 x^4+26 x^3+16 x^2+44 x+33$
- $y^2=22 x^6+14 x^5+9 x^4+5 x^3+7 x^2+8 x+14$
- $y^2=21 x^6+43 x^5+11 x^4+30 x^3+5 x^2+43 x+38$
- $y^2=8 x^6+3 x^5+5 x^4+38 x^3+43 x^2+36 x+45$
- $y^2=22 x^6+9 x^5+8 x^4+34 x^3+19 x^2+25 x+17$
- $y^2=4 x^6+28 x^5+2 x^4+x^3+18 x^2+20 x+32$
- $y^2=12 x^6+15 x^5+6 x^4+3 x^3+31 x^2+17 x+34$
- $y^2=27 x^6+14 x^5+40 x^4+11 x^3+8 x^2+41 x+7$
- $y^2=25 x^6+16 x^5+16 x^4+4 x^3+42 x^2+25 x+29$
- $y^2=38 x^6+29 x^5+14 x^4+12 x^3+36 x^2+11 x+1$
- $y^2=x^6+39 x^5+4 x^4+34 x^3+40 x^2+3 x+16$
- $y^2=x^6+20 x^5+33 x^4+3 x^3+35 x^2+44 x+7$
- $y^2=7 x^6+34 x^5+34 x^4+8 x^3+32 x^2+38 x+14$
- $y^2=21 x^6+27 x^5+20 x^4+20 x^3+27 x^2+3 x+12$
- $y^2=41 x^6+7 x^5+22 x^4+34 x^3+28 x^2+6 x+27$
- $y^2=29 x^6+9 x^5+23 x^4+23 x^3+19 x^2+40 x+12$
- $y^2=25 x^6+46 x^5+42 x^4+45 x^3+37 x^2+45 x+9$
- $y^2=7 x^6+33 x^5+26 x^4+38 x^3+40 x^2+30 x+18$
- $y^2=2 x^6+13 x^5+25 x^4+43 x^3+8 x^2+4 x+34$
- $y^2=12 x^6+46 x^5+17 x^4+27 x^3+43 x^2+26 x+6$
- $y^2=5 x^6+33 x^5+44 x^4+24 x^3+35 x^2+16 x+1$
- $y^2=16 x^6+20 x^5+30 x^4+16 x^3+13 x^2+5 x+41$
- $y^2=25 x^6+2 x^5+14 x^4+5 x^3+x^2+39 x+15$
- $y^2=2 x^6+36 x^5+20 x^4+45 x^3+43 x^2+35 x+41$
- $y^2=4 x^6+15 x^5+16 x^4+21 x^3+4 x^2+4 x+37$
- $y^2=32 x^6+4 x^5+20 x^4+20 x^3+46 x^2+42 x+44$
- $y^2=x^6+17 x^5+44 x^4+33 x^3+28 x^2+23 x+27$
- $y^2=12 x^6+30 x^5+11 x^4+40 x^3+36 x^2+46 x+38$
- $y^2=21 x^6+28 x^5+43 x^4+38 x^3+28 x^2+41 x+17$
- $y^2=36 x^6+4 x^5+24 x^4+20 x^3+31 x^2+15 x+25$
- $y^2=12 x^6+6 x^5+17 x^4+34 x^3+45 x^2+39 x+1$
- $y^2=10 x^6+26 x^5+27 x^3+39 x^2+15 x+42$
- $y^2=19 x^6+4 x^5+17 x^4+x^3+13 x^2+5 x+25$
- $y^2=44 x^6+36 x^5+31 x^4+43 x^3+14 x^2+12 x$
- $y^2=11 x^6+39 x^5+13 x^4+32 x^3+3 x^2+2 x+42$
- $y^2=12 x^6+12 x^5+38 x^4+36 x^3+11 x^2+32 x+39$
- $y^2=4 x^6+43 x^5+29 x^4+37 x^3+10 x^2+34 x+32$
- $y^2=42 x^6+22 x^5+34 x^4+8 x^3+3 x^2+9 x+33$
- $y^2=46 x^6+17 x^5+27 x^4+31 x^3+11 x^2+46 x+44$
- $y^2=33 x^6+6 x^5+5 x^4+42 x^3+28 x^2+42 x+1$
- $y^2=9 x^6+37 x^5+12 x^4+41 x^3+39 x^2+22 x+18$
- $y^2=36 x^6+3 x^5+13 x^4+x^3+44 x^2+15 x+2$
- $y^2=46 x^6+27 x^5+30 x^4+33 x^3+10 x^2+17 x+13$
- $y^2=43 x^6+11 x^5+8 x^4+13 x^3+43 x^2+45 x+17$
- $y^2=11 x^6+12 x^4+44 x^3+36 x^2+20 x+31$
- $y^2=35 x^6+17 x^5+32 x^4+25 x^3+11 x^2+4 x+33$
- $y^2=34 x^6+31 x^5+28 x^4+19 x^3+12 x^2+27 x+11$
- $y^2=29 x^6+14 x^5+38 x^4+20 x^3+18 x^2+38 x+43$
- $y^2=44 x^6+3 x^5+6 x^4+14 x^3+45 x^2+44 x+27$
- $y^2=36 x^6+8 x^5+15 x^4+37 x^3+4 x^2+14 x+4$
- $y^2=12 x^6+39 x^5+38 x^4+46 x^3+x^2+23 x+12$
- $y^2=27 x^6+39 x^5+7 x^4+43 x^3+4 x^2+20 x+14$
- $y^2=36 x^6+34 x^5+44 x^3+11 x^2+32 x+35$
- $y^2=27 x^6+14 x^5+6 x^4+36 x^3+12 x^2+17 x+23$
- $y^2=25 x^6+44 x^5+19 x^4+7 x^3+2 x^2+4 x+8$
- $y^2=x^6+11 x^5+29 x^4+32 x^3+41 x^2+17 x+32$
- $y^2=10 x^6+40 x^5+34 x^4+12 x^3+41 x^2+42 x+15$
- $y^2=5 x^6+21 x^5+29 x^4+3 x^3+15 x^2+23 x+24$
- $y^2=18 x^6+29 x^5+14 x^4+14 x^3+3 x^2+35 x+36$
- $y^2=41 x^6+36 x^5+29 x^3+x^2+18 x$
- $y^2=17 x^6+42 x^5+34 x^4+15 x^3+19 x^2+31 x+32$
- $y^2=6 x^6+18 x^5+24 x^4+10 x^3+39 x^2+31 x+22$
- $y^2=18 x^6+22 x^5+27 x^4+13 x^3+x^2+13 x+14$
- $y^2=7 x^6+23 x^5+44 x^4+32 x^3+31 x^2+32 x+18$
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$
| The endomorphism algebra of this simple isogeny class is 4.0.313344.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
| 2.47.am_es | $2$ | (not in LMFDB) |